Publications by authors named "Maria G Lizio"

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs).

View Article and Find Full Text PDF

One of the main challenges in cancer surgery is to ensure the complete excision of the tumour while sparing as much healthy tissue as possible. Histopathology, the gold-standard technique used to assess the surgical margins on the excised tissue, is often impractical for intra-operative use because of the time-consuming tissue cryo-sectioning and staining, and availability of histopathologists to assess stained tissue sections. Raman micro-spectroscopy is a powerful technique that can detect microscopic residual tumours on ex vivo tissue samples with accuracy, based entirely on intrinsic chemical differences.

View Article and Find Full Text PDF

The standard treatment for breast cancer is surgical removal mainly through breast-conserving surgery (BCS). We developed a new technique based on auto-fluorescence (AF) spectral imaging and Raman spectroscopy for fast intraoperative assessment of excision margins in BCS. A new wide-field AF imaging unit based on total internal reflection (TIR) was combined with a Raman spectroscopy microscope equipped with a 785 nm laser.

View Article and Find Full Text PDF

The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood.

View Article and Find Full Text PDF

Helical α-aminoisobutyric acid (Aib) foldamers show great potential as devices for the communication of conformational information across phospholipid bilayers, but determining their conformation in bilayers remains a challenge. In the present study, Raman, Raman optical activity (ROA), infrared (IR) and vibrational circular dichroism (VCD) spectroscopies have been used to analyze the conformational preferences of Aib foldamers in solution and when interacting with bilayers. A 3 -helix marker band at 1665-1668 cm in Raman spectra was used to show that net helical content increased strongly with oligomer length.

View Article and Find Full Text PDF

The early stages of fibril formation are difficult to capture in solution. We use cold-ion spectroscopy to examine an 11-residue peptide derived from the protein transthyretin and clusters of this fibre-forming peptide containing up to five units in the gas phase. For each oligomer, the UV spectra exhibit distinct changes in the electronic environment of aromatic residues in this peptide compared to that of the monomer and in the bulk solution.

View Article and Find Full Text PDF

Histidine is a key component of a number of enzymatic mechanisms, and undertakes a myriad of functionalities in biochemical systems. Its computational modelling can be problematic, as its capacity to take on a number of distinct formal charge states, and tautomers thereof, is difficult to capture by conventional techniques. We demonstrate a means for recovering the experimental Raman optical activity (ROA) spectra of histidine to a high degree of accuracy.

View Article and Find Full Text PDF