Publications by authors named "Maria Francesca Iozzi"

Article Synopsis
  • Dalton is a versatile program for analyzing molecular electronic structure using various advanced theoretical methods like Hartree-Fock and configuration interaction.
  • It provides calculations for a range of molecular properties, including energy, gradients for optimization, and responses for studies like vibrational and magnetic resonance.
  • Dalton is free to use and compatible with UNIX systems, allowing research on large molecules through efficient algorithms.
View Article and Find Full Text PDF

The relationship between the random-phase-approximation (RPA) correlation energy and the continuous algebraic Riccati equation is examined and the importance of a stabilizing solution is emphasized. The criterion to distinguish this from non-stabilizing solutions can be used to ensure that physical, smooth potential energy surfaces are obtained. An implementation of analytic RPA molecular gradients is presented using the Lagrangian technique.

View Article and Find Full Text PDF

The mechanochemistry of the disulfide bridge--that is, the influence of an externally applied force on the reactivity of the sulfur-sulfur bond--is investigated by unrestricted Kohn-Sham theory. Specifically, we apply the COGEF (constrained geometry simulates external force) approach to characterize the mechanochemistry of the disulfide bond in three different chemical environments: dimethyl disulfide, cystine, and a 102-atom model of the I27 domain in the titin protein. Furthermore, the mechanism of the thiol-disulfide reduction reaction under the effect of an external force is investigated by considering the COGEF potential for the adduct and transition-state clusters.

View Article and Find Full Text PDF

The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ½ centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ½ system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings.

View Article and Find Full Text PDF

An efficient, linear-scaling implementation of Kohn-Sham density-functional theory for the calculation of molecular forces for systems containing hundreds of atoms is presented. The density-fitted Coulomb force contribution is calculated in linear time by combining atomic integral screening with the continuous fast multipole method. For higher efficiency and greater simplicity, the near-field Coulomb force contribution is calculated by expanding the solid-harmonic Gaussian basis functions in Hermite rather than Cartesian Gaussians.

View Article and Find Full Text PDF

Five substituted tartaric acid derivatives are studied using density functional theory, both isolated and adsorbed onto an oxidized GaAs cluster, to model molecular layers on semiconductor surfaces. The structures, energies, and electronic properties are computed to clarify the interactions responsible for the electric behavior of the modified surfaces, used in semiconductor/metal junction devices. The chemical structure of the molecule/GaAs adducts is optimized ab initio and discussed for the first time.

View Article and Find Full Text PDF

We present a computational method, exploiting some features of the polarizable continuum model (PCM) to describe heterogeneous media; it belongs to the family of electrostatic embedding mixed methods, such as the more common quantum-mechanical (QM)/molecular mechanics approaches, with the electrostatic long range effects accounted for by a polarized continuum instead of atomic point charges. Provided effective dielectric constants are determined for the various parts of the system, the method is much faster than its atomistic counterpart, and allows for high-level QM calculations on the fragment of interest, using all the highly efficient computational tools developed for homogeneous PCM. Two case studies (the calculation of the pKa of solvent exposed acidic residues in a model protein, and the calculation of the electron spin resonance spectrum of a typical spin probe partially embedded in a membrane) are analyzed in some detail, to illustrate the application of the method to complex systems.

View Article and Find Full Text PDF

We present a quantum-mechanical theory to study excitation energy transfers between molecular systems in solution. The model is developed within the time-dependent (TD) density-functional theory and the solvent effects are introduced in terms of the polarizable continuum model (PCM). Unique characteristic of this model is that both "reaction field" and screening effects are included in a coherent and self-consistent way.

View Article and Find Full Text PDF