A resorcinol-formaldehyde precursor was synthesized to fabricate the CO selective Carbon Molecular Sieve Membranes (CMSMs) developed in this study. The degree of polymerization (DP) was analyzed via Gel Permeation Chromatography (GPC) and its effect on the CO/N perm-selectivity and CO permeance was investigated. The membrane that was polymerized at 80 °C (named R80) was selected as the best performing CMSM after a preliminary test.
View Article and Find Full Text PDFFurfural is a prominent, non-petroleum-based chemical feedstock material, derived from abundantly available hemicellulose. Hence, its derivatization into other useful biobased chemicals is a subject of high interest in contemporary academic and industrial research activities. While most strategies to convert furfural require energy-intensive reaction routes, the use of electrochemical activation allows to provide a sustainable and green alternative.
View Article and Find Full Text PDFA continuous tandem in-line evaporation-crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D.
View Article and Find Full Text PDFA one-step process for the selective production of methane from low-value aqueous carbohydrate streams is proposed. Sorbitol, used herein as a model compound, is fully converted to methane, CO2 , and a minor amount of H2 by using a physical mixture of Pt and Ru (1:5 in mass basis) at 220 °C and 35 bar. This conversion is the result of hydrogenolysis of part of the sorbitol over Ru and the in situ production of H2 through the aqueous-phase reforming of the remaining carbohydrate over Pt.
View Article and Find Full Text PDF