Biofortification refers to an approach to increase micronutrient concentrations in the edible parts of plants with increased bioavailability to the human population. Conventional, agronomic and transgenic breeding methods can be used to develop these biofortified crops, offering sustainable and cost-effective strategies. Pea has long been recognized as a valuable, nutritious food for the human diet, but there is a limited amount of information about it, which prevents the full micronutrient enrichment potential of this pulse crop to be reached.
View Article and Find Full Text PDFMetallo-β-lactamases (MβLs) are the main mechanism of bacterial resistance against last generation β-lactam antibiotics such as carbapenems. Most MβLs display unusual structural features in their active sites, such as binuclear zinc centers without carboxylate bridging ligands and/or a Cys ligand in a catalytic zinc site. Cys221 is an essential residue for catalysis conserved in B1 and B2 lactamases, while most B3 enzymes present a Ser in this position.
View Article and Find Full Text PDF