Schizophrenia (Heidelb)
December 2024
Schizophrenia (SCZ) is a severe psychotic disorder characterized by a disruption in glutamatergic NMDA receptor (NMDAR)-mediated neurotransmission. Compelling evidence has revealed that NMDAR activation is not limited to L-glutamate, L-aspartate, and glycine since other free amino acids (AAs) in the atypical D-configuration, such as D-aspartate and D-serine, also modulate this class of glutamatergic receptors. Although dysregulation of AAs modulating NMDARs has been previously reported in SCZ, it remains unclear whether distinct variations of these biomolecules occur during illness progression from at-risk premorbid to clinically manifest stage.
View Article and Find Full Text PDFFormyl peptide receptor 2 (FPR2) agonists can boost the resolution of inflammation and can offer alternative approaches for the treatment of pathologies with underlying chronic neuroinflammation, including neurodegenerative disorders. Starting from the FPR2 agonist previously identified in our laboratory and through fine-tuning of FPR2 potency and metabolic stability, we have identified a new series of ureidopropanamide derivatives endowed with a balanced combination of such properties. Computational studies provided insights into the key interactions of the new compounds for FPR2 activation.
View Article and Find Full Text PDFBrain metabolism is comprised in Alzheimer's disease (AD) and Parkinson's disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders-and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets-are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
View Article and Find Full Text PDFH/K ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific β subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from , and . Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass.
View Article and Find Full Text PDFThe cystic fibrosis (CF) lung disease is due to the lack/dysfunction of the CF Transmembrane Conductance Regulator (CFTR), a chloride channel expressed by epithelial cells as the main regulator of ion and fluid homeostasis. More than 2000 genetic variation in the CFTR gene are known, among which those with identified pathomechanism have been divided into six mutation classes. A major advancement in the pharmacotherapy of CF has been the development of small-molecule drugs hitting the root of the disease, i.
View Article and Find Full Text PDFMacrophages are immune cells that are important for the development of the defensive front line of the innate immune system. Following signal recognition, macrophages undergo activation toward specific functional states, consisting not only in the acquisition of specific features but also of peculiar metabolic programs associated with each function. For these reasons, macrophages are often isolated from mice to perform cellular assays to study the mechanisms mediating immune cell activation.
View Article and Find Full Text PDFReactive oxygen species (ROS) are fundamental for macrophages to eliminate invasive microorganisms. However, as observed in nonphagocytic cells, ROS play essential roles in processes that are different from pathogen killing, as signal transduction, differentiation, and gene expression. The different outcomes of these events are likely to depend on the specific subcellular site of ROS formation, as well as the duration and extent of ROS production.
View Article and Find Full Text PDFGlutaminolysis is known to correlate with ovarian cancer aggressiveness and invasion. However, how this affects the tumor microenvironment is elusive. Here, we show that ovarian cancer cells become addicted to extracellular glutamine when silenced for glutamine synthetase (GS), similar to naturally occurring GS-low, glutaminolysis-high ovarian cancer cells.
View Article and Find Full Text PDFThe redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined.
View Article and Find Full Text PDFADP/ATP carriers (AACs) are mitochondrial transport proteins playing a strategic role in maintaining the respiratory chain activity, fueling the cell with ATP, and also regulating mitochondrial apoptosis. To understand if AACs might represent a new molecular target for cancer treatment, we evaluated AAC expression levels in cancer/normal tissue pairs available on the Tissue Cancer Genome Atlas database (TCGA), observing that AACs are dysregulated in most of the available samples. It was observed that at least two AACs showed a significant differential expression in all the available kidney cancer/normal tissue pairs.
View Article and Find Full Text PDFMitochondria in neurons contribute to energy supply, the regulation of synaptic transmission, Ca homeostasis, neuronal excitability, and stress adaptation. In recent years, several studies have highlighted that the neurotransmitter serotonin (5-HT) plays an important role in mitochondrial biogenesis in cortical neurons, and regulates mitochondrial activity and cellular function in cardiomyocytes. 5-HT exerts its diverse actions by binding to cell surface receptors that are classified into seven distinct families (5-HT1 to 5-HT7).
View Article and Find Full Text PDFGlutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs).
View Article and Find Full Text PDFIntroduction: Cystic Fibrosis (CF) is caused by mutations in the (CFTR) gene. The most common mutation, , induces protein misprocessing and loss of CFTR function. The discovery through studies of the CFTR correctors (i.
View Article and Find Full Text PDFThe treatment of cystic fibrosis (CF) patients homozygous for the mutation with Orkambi, a combination of a corrector (lumacaftor) and a potentiator (ivacaftor) of the mutated CFTR protein, resulted in some amelioration of the respiratory function. However, a great variability in the clinical response was also observed. The aim of this study was to evaluate the response to Orkambi in a small cohort of F508del/F508del patients ( = 14) in terms of clinical and laboratory parameters, including ex vivo CFTR activity in mononuclear cells (MNCs), during a 12-month treatment.
View Article and Find Full Text PDFFrom advances in the knowledge of the immune system, it is emerging that the specialized functions displayed by macrophages during the course of an immune response are supported by specific and dynamically-connected metabolic programs. The study of immunometabolism is demonstrating that metabolic adaptations play a critical role in modulating inflammation and, conversely, inflammation deeply influences the acquisition of specific metabolic settings.This strict connection has been proven to be crucial for the execution of defined immune functional programs and it is now under investigation with respect to several human disorders, such as diabetes, sepsis, cancer, and autoimmunity.
View Article and Find Full Text PDFCystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky.
View Article and Find Full Text PDFThe role of colony stimulating factors (CSFs) in cystic fibrosis (CF) circulating neutrophils has not been thoroughly evaluated, considering that the neutrophil burden of lung inflammation in these subjects is very high. The aim of this study was to assess granulocyte-CSF (G-CSF) and granulocyte-macrophage-CSF (GM-CSF) levels in CF patients in various clinical conditions and how these cytokines impact on activation and priming of neutrophils. G-CSF and GM-CSF levels were measured in sputum and serum samples of stable CF patients (n = 21) and in CF patients with acute exacerbation before and after a course of antibiotic therapy (n = 19).
View Article and Find Full Text PDFMyostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary () at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids.
View Article and Find Full Text PDFWe previously found that human amniotic mesenchymal stem cells (hAMSCs) in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE) on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ-) mediated intercellular communication (GJIC) in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio) were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43), a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated.
View Article and Find Full Text PDFSperm motility, a feature essential for fertilization, is influenced by intracellular pH (pH) homeostasis. Several mechanisms are involved in pH regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na for H across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed.
View Article and Find Full Text PDFAim: The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well.
Methods: Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months.
Cystic fibrosis (CF), one of the most common genetic disorders affecting primarily Caucasians, is due to mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, encoding for a chloride channel also acting as regulator of other transmembrane proteins. In healthy subjects, CFTR is maintained in its correct apical plasma membrane location via the formation of a multiprotein complex in which scaffold proteins (such as NHERF1) and signaling molecules (such as cAMP and protein kinases) guarantee its correct functioning. In CF, a disorganized and dysfunctional airway epithelium brings an altered flux of ions and water into the lumen of bronchioles, consequent bacterial infections and an enormous influx of inflammatory cells (mainly polymorphonuclear neutrophils) into the airway lumen.
View Article and Find Full Text PDFGoblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia.
View Article and Find Full Text PDFEvidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase.
View Article and Find Full Text PDF