The aim of the present study was to characterize the mechanism underlying estrogen effects on the androgen-independent prostate cancer cell line PC-3. 17β-estradiol and the ERβ-selective agonist DPN, but not the ERα-selective agonist PPT, increased the incorporation of [methyl-(3)H]thymidine and the expression of Cyclin D2, suggesting that ERβ mediates the proliferative effect of estrogen on PC-3 cells. In addition, upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by 17β-estradiol and DPN were blocked by the ERβ-selective antagonist PHTPP in PC-3 cells.
View Article and Find Full Text PDFExpression of the estrogen receptor ESR1 is higher in the corpus than it is in the initial segment/caput and cauda of the epididymis. ESR1 immunostaining in the corpus has been localized not only in the nuclei but also in the cytoplasm and apical membrane, which indicates that ESR1 plays a role in membrane-initiated signaling. The present study investigated whether ESR1 mediates the activation of rapid signaling pathways by estradiol (E2) in the epididymis.
View Article and Find Full Text PDFThe identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell-cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors.
View Article and Find Full Text PDFThe aim of the present study was to investigate the role of each estrogen receptors on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Activation of ESR1 by 17β-estradiol (E2) and ESR1-selective agonist PPT increased CCND1 expression, and this effect was dependent on NF-kB activation. E2 and the ESR2-selective agonist DPN, but not PPT, increased, in a PI3K and CREB-dependent manner, the expression of CDKN1B and the transcription factors GATA-1 and DMRT1.
View Article and Find Full Text PDFThe Wnt/β-catenin signaling pathway controls several biological processes throughout development and adult life. Dysregulation of Wnt/β-catenin signaling underlies a wide range of pathologies in animals and humans, including cancer in different tissues. In this review, we provide an update of the Wnt/β-catenin signaling pathway and the possible roles of the Wnt/β-catenin signaling in the biology of testis, epididymis and prostate.
View Article and Find Full Text PDFIn this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells.
View Article and Find Full Text PDFThe aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells--in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats.
View Article and Find Full Text PDFThis review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), alpha1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and alpha1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation.
View Article and Find Full Text PDFBiol Reprod
January 2008
The aim of the present study was to determine the mechanisms involved in estrogen actions in cultured rat Sertoli cells. RT-PCR detected transcripts for the estrogen receptors ESR1 and ESR2 in cultured immature Sertoli cells and in the testis of 15-, 28-, and 120-day-old rats. The expression of ESR1 and ESR2 was confirmed in Sertoli cells by immunofluorescence and Western blot.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2007
Cardiovascular function is affected by many mechanisms, including the autonomic system, the kallikrein-kinin system (KKS), the renin-angiotensin system (RAS) and the endothelin system. The function of these systems seems to be fairly well preserved throughout the vertebrate scale, but evolution required several adaptations. Snakes are particularly interesting for studies related to the cardiovascular function because of their elongated shape, their wide variation in size and length, and because they had to adapt to extremely different habitats and gravitational influences.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH) and luteinizing hormone (LH) control gonadal function in mammalian and many non-mammalian vertebrates through the interaction with their receptors, FSHR and LHR. Although the same is true for some reptilian species, in Squamata (lizards and snakes) there is no definitive evidence for the presence of either two distinct gonadotropins or two distinct gonadotropin receptors. Our aim was to characterize the gonadotropin receptor(s) of the Bothrops jararaca snake.
View Article and Find Full Text PDF