Purpose: Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models.
Experimental Design: We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics.
To leverage complementary mechanisms for cancer cell removal, we developed a novel cell engineering and therapeutic strategy co-opting phagocytic clearance and antigen presentation activity into T cells. We engineered a chimeric engulfment receptor (CER)-1236, which combines the extracellular domain of TIM-4, a phagocytic receptor recognizing the "eat me" signal phosphatidylserine, with intracellular signaling domains (TLR2/TIR, CD28, and CD3ζ) to enhance both TIM-4-mediated phagocytosis and T cell cytotoxic function. CER-1236 T cells demonstrate target-dependent phagocytic function and induce transcriptional signatures of key regulators responsible for phagocytic recognition and uptake, along with cytotoxic mediators.
View Article and Find Full Text PDF