The treatment of invasive infections is a challenge because of the emergence and rapid spread of multidrug resistant strains. Particular problems are those strains that produce extended spectrum β-lactamases (ESBL's). Although the global characterization of these enzymes is advanced, knowledge of their molecular basis among clinical isolates in Ethiopia is extremely limited.
View Article and Find Full Text PDFBacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens.
View Article and Find Full Text PDFPathogenic spp. depend on the activity of a potent virulence plasmid-encoded / type 3 secretion system (T3SS) to colonize hosts and cause disease. It was recently shown that upregulates the virulence plasmid copy number (PCN) during infection and that the resulting elevated gene dose of plasmid-encoded T3SS genes is essential for virulence.
View Article and Find Full Text PDFSummary: Since its introduction, RNA-Seq technology has been used extensively in studies of pathogenic bacteria to identify and quantify differences in gene expression across multiple samples from bacteria exposed to different conditions. With some exceptions, tools for studying gene expression, determination of differential gene expression, downstream pathway analysis and normalization of data collected in extreme biological conditions is still lacking. Here, we describe ProkSeq, a user-friendly, fully automated RNA-Seq data analysis pipeline designed for prokaryotes.
View Article and Find Full Text PDFSelective ERα modulator, tamoxifen, is well tolerated in a heavily pretreated castration-resistant prostate cancer (PCa) patient cohort. However, its targeted gene network and whether expression of intratumor ERα due to androgen deprivation therapy (ADT) may play a role in PCa progression is unknown. In this study, we examined the inhibitory effect of tamoxifen on castration-resistant PCa in vitro and in vivo.
View Article and Find Full Text PDFRpoN, an alternative sigma factor commonly known as σ, is implicated in persistent stages of infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for virulence in mice, and functional assays showed that it controls biofilm formation and motility.
View Article and Find Full Text PDFCampylobacter jejuni is the major cause of bacterial gastroenteritis in humans. In contrast, colonization in avian hosts is asymptomatic. Body temperature differs between human (37 °C) and avian (42 °C) hosts, and bacterial growth in 37 °C is therefore a potential cue for higher virulence properties during human infection.
View Article and Find Full Text PDFCampylobacter jejuni is a prevalent human pathogen and a major cause of bacterial gastroenteritis in the world. In humans, C. jejuni colonizes the intestinal tract and its tolerance to bile is crucial for bacteria to survive and establish infection.
View Article and Find Full Text PDFType III secretion systems (T3SS) are dedicated to targeting anti-host effector proteins into the cytosol of the host cell to promote bacterial infection. Delivery of the effectors requires three specific translocator proteins, of which the hydrophilic translocator, LcrV, is located at the tip of the T3SS needle and is believed to facilitate insertion of the two hydrophobic translocators into the host cell membrane. Here we used as a model to study the role of LcrV in T3SS mediated intracellular effector targeting.
View Article and Find Full Text PDFNeutrophils are essential components of immunity and are rapidly recruited to infected or injured tissue. Upon their activation, neutrophils release granules to the cell's exterior, through a process called degranulation. These granules contain proteins with antimicrobial properties that help combat infection.
View Article and Find Full Text PDFThe ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections.
View Article and Find Full Text PDFPathogenic bacteria have evolved numerous virulence mechanisms that are essential for establishing infections. The enterobacterium Yersinia uses a type III secretion system (T3SS) encoded by a 70-kilobase, low-copy, IncFII-class virulence plasmid. We report a novel virulence strategy in Y.
View Article and Find Full Text PDFMicrobial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines.
View Article and Find Full Text PDFWe recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y.
View Article and Find Full Text PDFYersiniosis is a human disease caused by the bacterium Yersinia pseudotuberculosis or Yersinia enterocolitica. The infection is usually resolved but can lead to postinfectious sequelae, including reactive arthritis and erythema nodosum. The commonly used Yersinia mouse infection model mimics acute infection in humans to some extent but leads to systemic infection and eventual death.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMNs) are essential for the human innate immune defense, limiting expansion of invading microorganisms. PMN turnover is controlled by apoptosis, but the regulating signaling pathways remain elusive, largely due to inherent differences between mice and humans that undermine use of mouse models for understanding human PMN biology. Here, we aim to elucidate signal transduction mediating survival of human peripheral blood PMNs in response to bacteria, such as Yersinia pseudotuberculosis, an enteropathogen that causes the gastro-intestinal disease yersiniosis, as well as Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFThe human-pathogenic species of the Gram-negative genus Yersinia preferentially target and inactivate cells of the innate immune defense, suggesting that this is a critical step by which these bacteria avoid elimination and cause disease. In this study, bacterial interactions with dendritic cells, macrophages, and polymorphonuclear neutrophils (PMNs) in intestinal lymphoid tissues during early Yersinia pseudotuberculosis infection were analyzed. Wild-type bacteria were shown to interact mainly with dendritic cells, but not with PMNs, on day 1 postinfection, while avirulent yopH and yopE mutants interacted with PMNs as well as with dendritic cells.
View Article and Find Full Text PDFDue to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria.
View Article and Find Full Text PDFType III secretion enables bacteria to intoxicate eukaryotic cells with anti-host effectors. A class of secreted cargo are the two hydrophobic translocators that form a translocon pore in the host cell plasma membrane through which the translocated effectors may gain cellular entry. In pathogenic Yersinia, YopB and YopD shape this translocon pore.
View Article and Find Full Text PDFThe enteropathogen Yersinia pseudotuberculosis can survive in the harsh environment of lymphoid compartments that abounds in immune cells. This capacity is dependent on the plasmid-encoded Yersinia outer proteins (Yops) that are delivered into the host cell via a mechanism involving the Yersinia type III secretion system. We show that the virulence protein YopK has a role in the mechanism by which Y.
View Article and Find Full Text PDFPathogenic Yersinia all harbor a virulence plasmid-encoded Ysc-Yop T3SS. In this system, translocator function is performed by the hydrophobic proteins YopB and YopD. With the goal to better understand how YopD orchestrates yop-regulatory control, translocon pore formation and Yop effector translocation, we performed an in silico prediction of coiled-coil motifs in YopD and YopD-like sequences from other bacteria.
View Article and Find Full Text PDFDendritic cells play an important role in the immune response against pathogens, as they are responsible for the activation and control of both innate and adaptive immune responses. The CD11c-DTR(tg) model, which allows transient elimination of dendritic cells by diphtheria toxin-treatment (DTx), has been extensively used to study the importance of this immune cell during steady-state and infection conditions in mice. Infecting dendritic cell-depleted mice orally with Yersinia pseudotuberculosis results in a markedly reduced level of infection compared with infection of non-depleted mice.
View Article and Find Full Text PDF