Brain injuries are often associated with the later development of epilepsy. Evidence suggests that morphological and functional changes occur in the remaining neural tissue during a silent (or latent) period in which no seizures are expressed. It is believed that this silent (reorganization) period may provide a therapeutic window for modifying the natural history of disease progression.
View Article and Find Full Text PDFMedial ganglionic eminence (MGE) is one of the sources of inhibitory interneurons during development. Following transplantation in postnatal developing brain, MGE cells can increase local inhibition suggesting a possible protection to GABAergic dysfunction in brain disorders, such as epilepsy. Since it has been shown that MGE-derived cells harvested as neurospheres are able to suppress seizures, it might be important to investigate whether these protective effects would change in different seizure models.
View Article and Find Full Text PDFMost of the gamma-aminobutyric acid (GABA)ergic interneurons in the cerebral cortex originate from restricted regions of the ventral telencephalon known as the caudal and medial ganglionic eminence (MGE) and from the preoptic area. It is well established that dysfunction of GABAergic interneurons can lead to epilepsy. During the last decade new approaches to prevent, reduce, or reverse the epileptic condition have been studied, including cell-based therapy from different sources.
View Article and Find Full Text PDF