Purpose: To evaluate the effects of vigorous short-term exercise on the platelet and other cellular components of 2 point-of-care blood-processing devices: a buffy coat-based platelet-rich plasma (PRP) product and a plasma-based PRP product.
Methods: Twenty healthy subjects (aged 21-45 years) participated in a 20-minute vigorous exercise regimen on an upright stationary bike at 70% to 85% of maximum target heart rate. Pre- and post-exercise blood was processed in either a plasma-based or automated buffy coat-based PRP system.
The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP) have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field.
View Article and Find Full Text PDFIsolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture.
View Article and Find Full Text PDFA novel scheme for particle separation with insulator-based dielectrophoresis (iDEP) was developed. This technique offers the capability for an inverted order in particle elution, where larger particles leave the system before smaller particles. Asymmetrically shaped insulating posts, coupled with direct current (DC) biased low-frequency alternating current (AC) electric potentials, were used to successfully separate a mixture of 500 nm and 1 μm polystyrene particles (size difference of 0.
View Article and Find Full Text PDFThe effects of insulator-based DEP (iDEP) manipulation on cell viability were investigated by varying operating conditions and the shape of the insulating structures. Experiments were conducted with Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae cells by varying the applied potential (300-1000 V), exposure time (1-4 min), and composition of the suspending medium (0-10% glucose); using devices made from polydimethylsiloxane. Cell viability was quantified employing Trypan blue staining protocols.
View Article and Find Full Text PDFIn this study, the effect of the geometry of insulating posts on microparticle trapping in insulator based dielectrophoresis (iDEP) was analyzed. The motivation for this research was to study how to improve particle trapping and enrichment by modifying the shape of insulating posts used in iDEP microdevices, while keeping post spacing constant. Mixtures of inert polystyrene particles were employed for demonstrating the effects of insulator shape on particle capture and enrichment.
View Article and Find Full Text PDF