Publications by authors named "Maria F Rojas-Duran"

In addition to A, C, G and U, RNA contains over 100 additional chemically distinct residues. An abundant modified base frequently found in tRNAs, dihydrouridine (D) has recently been mapped to over 100 positions in mRNAs in yeast and human cells. Multiple highly conserved dihydrouridine synthases associate with and modify mRNA, suggesting there are many D sites yet to be found.

View Article and Find Full Text PDF

Dihydrouridine is a modified nucleotide universally present in tRNAs, but the complete dihydrouridine landscape is unknown in any organism. We introduce dihydrouridine sequencing (D-seq) for transcriptome-wide mapping of D with single-nucleotide resolution and use it to uncover novel classes of dihydrouridine-containing RNA in yeast which include mRNA and small nucleolar RNA (snoRNA). The novel D sites are concentrated in conserved stem-loop regions consistent with a role for D in folding many functional RNA structures.

View Article and Find Full Text PDF

Translational control shapes the proteome in normal and pathophysiological conditions. Current high-throughput approaches reveal large differences in mRNA-specific translation activity but cannot identify the causative mRNA features. We developed direct analysis of ribosome targeting (DART) and used it to dissect regulatory elements within 5' untranslated regions that confer 1,000-fold differences in ribosome recruitment in biochemically accessible cell lysates.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA.

View Article and Find Full Text PDF

Ribosome-binding proteins function broadly in protein synthesis, gene regulation, and cellular homeostasis, but the complete complement of functional ribosome-bound proteins remains unknown. Using quantitative mass spectrometry, we identified late-annotated short open reading frame 2 (Lso2) as a ribosome-associated protein that is broadly conserved in eukaryotes. Genome-wide crosslinking and immunoprecipitation of Lso2 and its human ortholog coiled-coil domain containing 124 (CCDC124) recovered 25S ribosomal RNA in a region near the A site that overlaps the GTPase activation center.

View Article and Find Full Text PDF

Translational control of gene expression plays essential roles in cellular stress responses and organismal development by enabling rapid, selective, and localized control of protein production. Translational regulation depends on context-dependent differences in the protein output of mRNAs, but the key mRNA features that distinguish efficiently translated mRNAs are largely unknown. Here, we comprehensively determined the RNA-binding preferences of the eukaryotic initiation factor 4G (eIF4G) to assess whether this core translation initiation factor has intrinsic sequence preferences that may contribute to preferential translation of specific mRNAs.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients.

View Article and Find Full Text PDF

Translation is a core cellular process carried out by a highly conserved macromolecular machine, the ribosome. There has been remarkable evolutionary adaptation of this machine through the addition of eukaryote-specific ribosomal proteins whose individual effects on ribosome function are largely unknown. Here we show that eukaryote-specific Asc1/RACK1 is required for efficient translation of mRNAs with short open reading frames that show greater than average translational efficiency in diverse eukaryotes.

View Article and Find Full Text PDF

A diverse array of post-transcriptional modifications is found in RNA molecules from all domains of life. While the locations of RNA modifications are well characterized in abundant noncoding RNAs, modified sites in less abundant mRNAs are just beginning to be discovered. Recent work has revealed hundreds of previously unknown and dynamically regulated pseudouridines (Ψ) in mRNAs from diverse organisms.

View Article and Find Full Text PDF

RNA molecules contain a variety of chemically diverse, posttranscriptionally modified bases. The most abundant modified base found in cellular RNAs, pseudouridine (Ψ), has recently been mapped to hundreds of sites in mRNAs, many of which are dynamically regulated. Though the pseudouridine landscape has been determined in only a few cell types and growth conditions, the enzymes responsible for mRNA pseudouridylation are universally conserved, suggesting many novel pseudouridylated sites remain to be discovered.

View Article and Find Full Text PDF

Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre.

View Article and Find Full Text PDF

mRNA levels do not accurately predict protein levels in eukaryotic cells. To investigate contributions of 5' untranslated regions (5' UTRs) to mRNA-specific differences in translation, we determined the 5' UTR boundaries of 96 yeast genes for which in vivo translational efficiency varied by 80-fold. A total of 25% of genes showed substantial 5' UTR heterogeneity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni8d9bkup6uvoo3i6h2rvnf9nqsan59ak): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once