Publications by authors named "Maria F Presti"

A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments.

View Article and Find Full Text PDF

A grand challenge in biosensor design is to develop a single molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Conceptually, this can be achieved by fusing a small, antibody-like binding domain to a fluorescent protein in such a way that target binding activates fluorescence. Although this design is simple to envision, its execution is not obvious.

View Article and Find Full Text PDF

Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior.

View Article and Find Full Text PDF

Background: Myo1e is a nonmuscle motor protein enriched in podocytes. Mutations in are associated with steroid-resistant nephrotic syndrome (SRNS). Most of the variants identified by genomic sequencing have not been functionally characterized.

View Article and Find Full Text PDF

Ubiquitin-binding shuttle UBQLN2 mediates crosstalk between proteasomal degradation and autophagy, likely via interactions with K48- and K63-linked polyubiquitin chains, respectively. UBQLN2 comprises self-associating regions that drive its homotypic liquid-liquid phase separation (LLPS). Specific interactions between one of these regions and ubiquitin inhibit UBQLN2 LLPS.

View Article and Find Full Text PDF

Designing proteins that can switch between active (ON) and inactive (OFF) conformations in response to signals such as ligand binding and incident light has been a tantalizing endeavor in protein engineering for over a decade. While such designs have yielded novel biosensors, therapeutic agents, and smart biomaterials, the response times (times for switching ON and OFF) of many switches have been too slow to be of practical use. Among the defining properties of such switches, the kinetics of switching has been the most challenging to optimize.

View Article and Find Full Text PDF

Disrupting a protein's sequence by cleavage or insertion of a hinge domain forms the basis for protein engineering tools, including fragment complementation, circular permutation, and domain swapping. Despite the utility of these designs, their widespread implementation has been limited by the difficulty in choosing where to interrupt the protein sequence: the resulting fragments often aggregate or fail to reassemble. Here, we show that an optimal site exists within ribose binding protein (RBP) that, when disrupted, results in the most efficient formation of fragment-complemented and domain-swapped species.

View Article and Find Full Text PDF