Publications by authors named "Maria F Murillo"

Bilateral sonication with focused ultrasound (FUS) in conjunction with microbubbles has been shown to separately reduce amyloid plaques and hyperphosphorylated tau protein in the hippocampal formation and the entorhinal cortex in different mouse models of Alzheimer's disease (AD) without any therapeutic agents. However, the two pathologies are expressed concurrently in human disease. Therefore, the objective of this study is to investigate the effects of repeated bilateral sonications in the presence of both pathologies.

View Article and Find Full Text PDF

Optogenetics employs engineered viruses to genetically modify cells to express specific light-sensitive ion channels. The standard method for gene delivery in the brain involves invasive craniotomies that expose the brain and direct injections of viruses that invariably damage neural tissue along the syringe tract. A recently proposed alternative in which non-invasive optogenetics is performed with focused ultrasound (FUS)-mediated blood-brain barrier (BBB) openings has been found to non-invasively facilitate gene delivery for optogenetics in mice.

View Article and Find Full Text PDF

Exposure to stressful or traumatic stimuli may alter hypothalamic-pituitary-adrenal (HPA) axis and sympathoadrenal-medullary (SAM) reactivity. This altered reactivity may be a component or cause of mental illnesses. Dissecting these mechanisms requires tools to reliably probe HPA and SAM function, particularly the adrenal component, with temporal precision.

View Article and Find Full Text PDF

Optogenetics has revolutionized the capability of controlling genetically modified neurons in vitro and in vivo and has become an indispensable neuroscience tool. Using light as a probe for selective neuronal activation or inhibition and as a means to read out neural activity has dramatically enhanced our understanding of complex neural circuits. However, a common limitation of optogenetic studies to date is their invasiveness and spatiotemporal range.

View Article and Find Full Text PDF

Focused ultrasound (FUS) in combination with systemically injected microbubbles can be used to non-invasively open the blood-brain barrier (BBB) in targeted regions for a variety of therapeutic applications. Over the past two decades, preclinical research into the safety and efficacy of FUS-induced BBB opening has proven this technique to be transient and efficacious, propelling FUS-induced BBB opening into several clinical trials in recent years. However, as clinical trials further progress, the neuroinflammatory response to FUS-induced BBB opening needs to be better understood.

View Article and Find Full Text PDF

Focused ultrasound-enhanced intranasal (IN + FUS) delivery is a noninvasive approach that utilizes the olfactory pathway to administer pharmacological agents directly to the brain, allowing for a more homogenous distribution in targeted locations compared to IN delivery alone. However, whether such a strategy has therapeutic values, especially in neurodegenerative disorders such as Parkinson's disease (PD), remains to be established. Herein, we evaluated whether the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine catalysis, could be enhanced by IN + FUS delivery of brain-derived neurotrophic factor (BDNF) in a toxin-based PD mouse model.

View Article and Find Full Text PDF

Objective: Neurostimulation technologies are important for studying neural circuits and the connections that underlie neurological and psychiatric disorders. However, current methods come with limitations such as the restraint on movement imposed by the wires delivering stimulation. The objective of this study was to assess whether the e-Particle (EP), a novel wireless neurostimulator, could sufficiently stimulate the brain to modify behavior without these limitations.

View Article and Find Full Text PDF