Publications by authors named "Maria F Luna"

Objectives: To understand the meaning of the experiences of breast cancer patients undergoing diagnostic and treatment processes.

Material And Methods: A descriptive qualitative study based on the hermeneutic-interpretative scientific paradigm and grounded in a phenomenological epistemological framework. The study included women aged 18 years or older diagnosed with breast cancer and treated at a university clinic in Bogotá, who were given a semi-structured interview.

View Article and Find Full Text PDF

In this study, the effect of native plant-growth-promoting microorganisms (PGPM) as bio-inoculants was assessed as an alternative to improve Ilex paraguariensis Saint Hilaire growth in the nursery. Fourteen Trichoderma strains isolated from yerba mate roots were evaluated in vitro for their potential as biological control agents (BCA) and PGPM. The PGPM properties were evaluated through the strain's antagonistic activity against three fungal pathogens (Alternaria sp.

View Article and Find Full Text PDF

The use of multispecies bacterial bio-inputs is a promising strategy for sustainable crop production over the use of single-species inoculants. Studies of the use of multispecies bio-inputs in horticultural crops are scarce, not only on the growth-promoting effects of each bacterium within the formulation, but also on their compatibility and persistence in the root environment. In this work, we described that a multispecies bacterial bio-input made up of Az39, PAL-5, Pf-5 and sp.

View Article and Find Full Text PDF

Paraburkholderia tropica MTo-293 was applied as an experimental bio-input to Solanum lycopersicum (tomato) cv. Platense. Different plant growth systems and inoculation strategies were tested to evaluate P.

View Article and Find Full Text PDF

St. Hil (yerba mate) is an important crop in the north of Argentina, mainly in Misiones province. The application of as a biocontroller and biofertilizer can replace or reduce the use of agrochemicals, decreasing the negative ecological impact.

View Article and Find Full Text PDF

, a soybean N-fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium's carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source.

View Article and Find Full Text PDF

Paraburkholderia tropica is an endophytic nitrogen-fixing bacterium isolated from the rhizosphere, rhizoplane, and internal tissues of sugarcane and corn plants in different geographical regions. Other plant-growth-promoting abilities, such as phosphate solubilization and antifungal activity, have also been reported for this bacterium. With an aim at investigating the potential use of P.

View Article and Find Full Text PDF

Purpureocillium lilacinum (Thom) Samsom is one of the most studied fungi in the control of plant parasitic nematodes. However, there is not specific information on its ability to inhibit some pathogenic bacteria, fungi, or yeast. This work reports the production of several antifungal hydrolytic enzymes by a strain of P.

View Article and Find Full Text PDF

Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e.

View Article and Find Full Text PDF

Gluconacetobacter diazotrophicus PAL3 was grown in a chemostat with N(2) and mixtures of xylose and gluconate. Xylose was oxidized to xylonate, which was accumulated in the culture supernatants. Biomass yields and carbon from gluconate incorporated into biomass increased with the rate of xylose oxidation.

View Article and Find Full Text PDF