Publications by authors named "Maria F Forni"

Unlabelled: The cellular metabolism of macrophages depends on tissue niches and can control macrophage inflammatory or resolving phenotypes. Yet, the identity of signals within tissue niches that control macrophage metabolism is not well understood. Here, using single-cell RNA sequencing of macrophages in early mouse wounds, we find that, rather than gene expression of canonical inflammatory or resolving polarization markers, metabolic gene expression defines distinct populations of early wound macrophages.

View Article and Find Full Text PDF
Article Synopsis
  • The liver experiences aging-related decline in mitochondrial function, leading to increased risk of liver diseases, as structural changes in mitochondria and metabolism are observed.
  • The study uses advanced imaging techniques to analyze how mitochondrial structure and size alter with age in mice, while also revealing metabolic shifts in older samples.
  • Key findings include the loss of the MICOS complex and reduction of the SAM50 protein, both of which are linked to increased susceptibility to liver diseases, highlighting the role of diet and aging in these processes.
View Article and Find Full Text PDF

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds.

View Article and Find Full Text PDF

Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds.

View Article and Find Full Text PDF

Many human diseases are caused by mutations in nuclear envelope (NE) proteins. How protein homeostasis and disease etiology are interconnected at the NE is poorly understood. Specifically, the identity of local ubiquitin ligases that facilitate ubiquitin-proteasome-dependent NE protein turnover is presently unknown.

View Article and Find Full Text PDF

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions.

View Article and Find Full Text PDF

Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are stromal cells that display self-renewal and multipotent differentiation capacity. The repertoire of mature cells generated ranges but is not restricted to: fat, bone and cartilage. Their potential importance for both cell therapy and maintenance of in vivo homeostasis is indisputable.

View Article and Find Full Text PDF

Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart.

View Article and Find Full Text PDF

Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming.

View Article and Find Full Text PDF

Calorie restriction (CR) has been amply demonstrated to modify mitochondrial function. However, little is known regarding the effects of this dietary regimen on mitochondrial membranes. We isolated phospholipids from rat liver mitochondria from animals on CR or ad libitum diets and found that mitochondria from ad libitum animals present an increased content of lipoperoxides and the content of cardiolipin.

View Article and Find Full Text PDF

Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β.

View Article and Find Full Text PDF

Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes.

View Article and Find Full Text PDF

Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process.

View Article and Find Full Text PDF

The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population.

View Article and Find Full Text PDF

Mitochondria play a key role in adaptation during stressing situations. Cardiolipin, the main anionic phospholipid in mitochondrial membranes, is expected to be a determinant in this adaptive mechanism since it modulates the activity of most membrane proteins. Here, we used Saccharomyces cerevisiae subjected to conditions that affect mitochondrial metabolism as a model to determine the possible role of cardiolipin in stress adaptation.

View Article and Find Full Text PDF

Background: Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation.

View Article and Find Full Text PDF

The skin is a complex stratified organ which acts not only as a permeability barrier and defense against external agents, but also has essential thermoregulatory, sensory and metabolic functions. Due to its high versatility and activity, the skin undergoes continuous self-renewal to repair damaged tissue and replace old cells. Consequently, the skin is a reservoir for adult stem cells of different embryonic origins.

View Article and Find Full Text PDF

Purpose/aim: Corneal epithelial stem cells have been used for the treatment of total limbal deficiency with corneal conjunctivalization and decreased vision secondary to a variety of ocular surface diseases. We set to compare the ability of different extracellular components in promoting growth and migration of these cells.

Materials And Methods: Growth parameters were evaluated, including cell migration and proliferation (by wound healing) and mRNA gene expression (by quantitative RT-PCR).

View Article and Find Full Text PDF

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4(+) ion and H2O2.

View Article and Find Full Text PDF