Publications by authors named "Maria Estevez Silva"

Neuroepithelial stem cells (NSC) from different anatomical regions of the embryonic neural tube's rostrocaudal axis can differentiate into diverse central nervous system tissues, but the transcriptional regulatory networks governing these processes are incompletely understood. Here, we measure region-specific NSC gene expression along the rostrocaudal axis in a human pluripotent stem cell model of early central nervous system development over a 72-h time course, spanning the hindbrain to cervical spinal cord. We introduce Escarole, a probabilistic clustering algorithm for non-stationary time series, and combine it with prior-based regulatory network inference to identify genes that are regulated dynamically and predict their upstream regulators.

View Article and Find Full Text PDF

Background: Transplantation of human pluripotent stem cell (hPSC)-derived neurons into chick embryos is an established preliminary assay to evaluate engraftment potential. Yet, with recent advances in deriving diverse human neuronal subtypes, optimizing and standardizing such transplantation methodology for specific subtypes at their correlated anatomical sites is still required.

New Method: We determined the optimal stage of hPSC-derived motor neuron (hMN) differentiation for ex ovo transplantation, and developed a single injection protocol that implants hMNs throughout the spinal cord enabling broad regional engraftment possibilities.

View Article and Find Full Text PDF

Colinear HOX expression during hindbrain and spinal cord development diversifies and assigns regional neural phenotypes to discrete rhombomeric and vertebral domains. Despite the precision of HOX patterning in vivo, in vitro approaches for differentiating human pluripotent stem cells (hPSCs) to posterior neural fates coarsely pattern HOX expression thereby generating cultures broadly specified to hindbrain or spinal cord regions. Here, we demonstrate that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2(+)/Brachyury(+) neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days.

View Article and Find Full Text PDF

The embryonic neuroepithelium gives rise to the entire central nervous system in vivo, making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here, we report that hPSCs maintained under chemically defined, feeder-independent, and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions, without small molecule inhibitors, and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12, sodium bicarbonate, selenium, ascorbic acid, transferrin, and insulin (i.

View Article and Find Full Text PDF