Isotopes Environ Health Stud
August 2017
The main aim goal of this review was to gather information about recent publications related to deuterium oxide (DO), and its use as a scientific tool related to human health. Searches were made in electronic databases Pubmed, Scielo, Lilacs, Medline and Cochrane. Moreover, the following patent databases were consulted: EPO (Espacenet patent search), USPTO (United States Patent and Trademark Office) and Google Patents, which cover researches worldwide related to innovations using DO.
View Article and Find Full Text PDFIn humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract.
View Article and Find Full Text PDFMetabolism
October 2012
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[(14)C]-pyruvate into glycerol-TAG.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2007
The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups.
View Article and Find Full Text PDF