Publications by authors named "Maria Elena Torres-Padilla"

Transcriptional activation of the embryonic genome (EGA) is a major developmental landmark enabling the embryo to become independent from maternal control. The magnitude and control of transcriptional reprogramming during this event across mammals remains poorly understood. Here, we developed Smart-seq+5' for high sensitivity, full-length transcript coverage and simultaneous capture of 5' transcript information from single cells and single embryos.

View Article and Find Full Text PDF

A classical question in biology is how different processes are controlled in space and time, with research pointing to different mechanisms as timers. In this collection of Voices, we asked researchers to define their scientific questions related to time-keeping and the approaches they use to answer them.

View Article and Find Full Text PDF

During development, H3K9me3 heterochromatin is dynamically rearranged, silencing repeat elements and protein coding genes to restrict cell identity. Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast and recently shown to be required for H3K9me3 maintenance in human fibroblasts, but its function during development remains unknown. Here, we show that ERH is required for proper segregation of the inner cell mass and trophectoderm cell lineages during mouse development by repressing totipotent and alternative lineage programs.

View Article and Find Full Text PDF

Dynamic epigenomic reprogramming occurs during mammalian oocyte maturation and early development. However, the underlying transcription circuitry remains poorly characterized. By mapping cis-regulatory elements using H3K27ac, we identified putative enhancers in mouse oocytes and early embryos distinct from those in adult tissues, enabling global transitions of regulatory landscapes around fertilization and implantation.

View Article and Find Full Text PDF
Article Synopsis
  • The centromere is crucial for proper chromosome segregation during cell division, and certain RNA transcripts may play a role in its function.
  • Research using mouse embryonic stem cells revealed that an imbalance in specific centromeric RNA levels leads to chromosome segregation errors.
  • The study identified that the secondary structure of these transcripts, rather than their sequence, is key for their function, suggesting that centromeric RNA operates through its shape to interact with proteins involved in chromosome segregation.
View Article and Find Full Text PDF

Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time.

View Article and Find Full Text PDF

DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome and is considered an epigenetic fingerprint.

View Article and Find Full Text PDF

Fertilization in mammals is accompanied by an intense period of chromatin remodeling and major changes in nuclear organization. How the earliest events in embryogenesis, including zygotic genome activation (ZGA) during maternal-to-zygotic transition, influence such remodeling remains unknown. Here, we have investigated the establishment of nuclear architecture, focusing on the remodeling of lamina-associated domains (LADs) during this transition.

View Article and Find Full Text PDF

Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated.

View Article and Find Full Text PDF

In mammals, cells acquire totipotency at fertilization. Embryonic genome activation (EGA), which occurs at the 2-cell stage in the mouse and 4- to 8-cell stage in humans, occurs during the time window at which embryonic cells are totipotent and thus it is thought that EGA is mechanistically linked to the foundations of totipotency. The molecular mechanisms that lead to the establishment of totipotency and EGA had been elusive for a long time, however, recent advances have been achieved with the establishment of new cell lines with greater developmental potential and the application of novel low-input high-throughput techniques in embryos.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell genomics enables the identification of cell types based on their molecular profiles, especially helping to find novel and rare cell types through RNA sequencing.
  • The new tool CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types) is designed to identify genes that could serve as markers for these rare cell types, addressing a limitation of traditional clustering methods.
  • CIARA has proven to outperform existing techniques for detecting rare cell types and can be applied to various single-cell data types, with user-friendly implementations available in R and Python.
View Article and Find Full Text PDF

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis.

View Article and Find Full Text PDF

Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments.

View Article and Find Full Text PDF

Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape.

View Article and Find Full Text PDF

How transcription is regulated as development commences is fundamental to understand how the transcriptionally silent mature gametes are reprogrammed. The embryonic genome is activated for the first time during zygotic genome activation (ZGA). How RNA polymerase II (Pol II) and productive elongation are regulated during this process remains elusive.

View Article and Find Full Text PDF

Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state.

View Article and Find Full Text PDF

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation.

View Article and Find Full Text PDF

Totipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures.

View Article and Find Full Text PDF