Aggregation kinetics of proteins and peptides have been studied extensively due to their significance in many human diseases, including neurodegenerative disorders, and the roles they play in some key physiological processes. However, most of these studies have been performed as bulk measurements using Thioflavin T or other fluorescence turn-on reagents as indicators of fibrillization. Such techniques are highly successful in making inferences about the nucleation and growth mechanism of fibrils, yet cannot directly measure assembly reactions at low protein concentrations which is the case for amyloid-β (Aβ) peptide under physiological conditions.
View Article and Find Full Text PDFGold nanoparticles are becoming a promising platform for the delivery of drugs to treat neurodegenerative diseases. Parkinson's disease, associated with the aggregation of α-synuclein, is a condition that results in dysfunctional neuronal cells leading to their degeneration and death. Oxidative stress has been strongly implicated as a common feature in this process.
View Article and Find Full Text PDFAggregates of amyloid-β (Aβ) are characteristic of Alzheimer's disease, but there is no consensus as to either the nature of the toxic molecular complex or the mechanism by which toxic aggregates are produced. We report on a novel feature of amyloid-lipid interactions where discontinuities in the lipid continuum can serve as catalytic centers for a previously unseen microscale aggregation phenomenon. We show that specific lipid membrane conditions rapidly produce long contours of lipid-bound peptide, even at sub-physiological concentrations of Aβ.
View Article and Find Full Text PDF