A series of 1,3,4-oxadiazol-2-ones was synthesized and tested for activity as antagonists at GPR55 in cellular beta-arrestin redistribution assays. The synthesis was designed to be modular in nature so that a sufficient number of analogues could be rapidly accessed to explore initial structure-activity relationships. The design of analogues was guided by the docking of potential compounds into a model of the inactive form of GPR55.
View Article and Find Full Text PDFSpiroscytalin (1), a new tetramic acid that possesses an uncommon spiro-ring fusion between a polyketide-derived octalin ring system and a 2,4-pyrrolidinedione, along with two known compounds, leporin B (2) and purpactin A (3), were isolated from a solid phase culture of the fungus Scytalidium cuboideum (MSX 68345). The molecular connectivity of 1-3 was determined using NMR spectroscopy and mass spectrometry. The relative configurations of 1 and 2 were determined by NOESY experiments.
View Article and Find Full Text PDFThe mechanism for the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle is proposed to proceed by single-electron oxidation of coniferyl alcohol, subsequent reaction with one of the oxygen atoms of taxifolin's catechol moiety, and finally, further oxidation to form four of the major components of silymarin: silybin A, silybin B, isosilybin A, and isosilybin B. This mechanism is significantly different from a previously proposed process that involves the coupling of two independently formed radicals.
View Article and Find Full Text PDFThe reaction of acetylides with sulfonyl azides was found to selectively form 1,5-substituted sulfonyl triazoles. This reaction thus provides access to the regioisomeric product as compared to the popular copper-catalyzed azide-alkyne cycloaddition. The reaction is efficient and selective with a variety of alkyne sources and sulfonyl azides and can incorporate an additional electrophile to yield 1,4,5-trisubstituted sulfonyl triazoles.
View Article and Find Full Text PDFFluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists because of their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2'-deoxy-2'-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine 5'-monophosphate decarboxylase (ODCase or OMPDCase).
View Article and Find Full Text PDFIn recent years, orotidine-5'-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine.
View Article and Find Full Text PDF