Publications by authors named "Maria Elena DE Bellard"

The skin is the most extensive organ in vertebrates, composed of two layers: the epidermis and the dermis. Sensory axons originating from the dorsal root ganglia innervate the skin mechanoreceptors in the dermis. Elasmobranchs, which appeared 380 million years ago, are characterized by rough skin composed of dermal denticles.

View Article and Find Full Text PDF

The neural crest is a stem cell population that forms in the neurectoderm of all vertebrates and gives rise to a diverse set of cells such as sensory neurons, Schwann cells and melanocytes. Neural crest development in snakes is still poorly understood. From the point of view of evolutionary and comparative anatomy is an interesting topic given the unique anatomy of snakes.

View Article and Find Full Text PDF

Neural crest cells (NCC) migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system. Little is known about the molecular mechanisms that lead migrating trunk NCC to settle at selected sites in the embryo, ceasing their migration and initiating differentiation programs. To identify candidate genes involved in these processes, we profiled genes up-regulated in purified post-migratory compared with migratory NCC using a staged, macroarrayed cDNA library.

View Article and Find Full Text PDF

Background: The neural crest is a group of multipotent cells that give rise to a wide variety of cells, especially portion of the peripheral nervous system. Neural crest cells (NCCs) show evolutionary conserved fate restrictions based on their axial level of origin: cranial, vagal, trunk, and sacral. While much is known about these cells in mammals, birds, amphibians, and fish, relatively little is known in other types of amniotes such as snakes, lizards, and turtles.

View Article and Find Full Text PDF

Background: Trunk neural crest cells migrate rapidly along characteristic pathways within the developing vertebrate embryo. Proper trunk neural crest cell migration is necessary for the morphogenesis of much of the peripheral nervous system, melanocytes, and the adrenal medulla. Numerous molecules help guide trunk neural crest cell migration throughout the early embryo.

View Article and Find Full Text PDF

Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate.

View Article and Find Full Text PDF

Myelin is probably one of the most fascinating and innovative biological acquisition: a glia plasma membrane tightly wrapped around an axon and insulating it. Chondrichthyans (cartilaginous fishes) form a large group of vertebrates, and they are among oldest extant jawed vertebrate lineage. It has been known from studies 150 years ago, that they are positioned at the root of the successful appearance of compact myelin and main adhesive proteins in vertebrates.

View Article and Find Full Text PDF

The development of the nervous system involves cells remaining within the neural tube (CNS) and a group of cells that delaminate from the dorsal neural tube and migrate extensively throughout the developing embryo called neural crest cells (NCC). These cells are a mesenchymal highly migratory group of cells that give rise to a wide variety of cell derivatives: melanocytes, sensory neurons, bone, Schwann cells, etc. But not all NCC can give rise to all derivatives, they have fate restrictions based on their axial level of origin: cranial, vagal, trunk and sacral.

View Article and Find Full Text PDF

Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia.

View Article and Find Full Text PDF

The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum.

View Article and Find Full Text PDF

Background: Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood.

View Article and Find Full Text PDF

Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells.

View Article and Find Full Text PDF

The Schwann cells are the myelinating glia of the peripheral nervous system that originated during development from the highly motile neural crest. However, we do not know what the guidance signals for the Schwann cell precursors are. Therefore, we set to test some of the known neurotrophins that are expressed early in developing embryos and have been shown to be critical for the survival and patterning of developing glia and neurons.

View Article and Find Full Text PDF

Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment.

View Article and Find Full Text PDF

The capacity to image a growing embryo while simultaneously studying the developmental function of specific molecules provides invaluable information on embryogenesis. However, until recently, this approach was accomplished with difficulty both because of the advanced technology needed and because an easy method of minimizing damage to the embryo was unavailable. Here, we present a novel way of adapting the well-known EC culture of whole chick embryos to time-lapse imaging and to functional molecular studies using blocking agents.

View Article and Find Full Text PDF

Both neurons and glia of the PNS are derived from the neural crest. In this study, we have examined the potential function of lunatic fringe in neural tube and trunk neural crest development by gain-of-function analysis during early stages of nervous system formation. Normally lunatic fringe is expressed in three broad bands within the neural tube, and is most prominent in the dorsal neural tube containing neural crest precursors.

View Article and Find Full Text PDF

Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development.

View Article and Find Full Text PDF

Neural crest cells emerge from the neural tube early in development. They migrate extensively throughout the embryo and form most of the head and peripheral nervous system, giving rise to sensory and sympathetic ganglia, heart regions, adrenal cells, head bones, teeth, muscle cells, sensory organs, melanocytes, and other cell types. The neural crest is interesting because of its unique origin, development and differentiation.

View Article and Find Full Text PDF

Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors.

View Article and Find Full Text PDF

Neural crest cells migrate segmentally through the rostral half of each trunk somite due to inhibitory influences of ephrins and other molecules present in the caudal-half of somites. To examine the potential role of Notch/Delta signaling in establishing the segmental distribution of ephrins, we examined neural crest migration and ephrin expression in Delta-1 mutant mice. Using Sox-10 as a marker, we noted that neural crest cells moved through both rostral and caudal halves of the somites in mutants, consistent with the finding that ephrinB2 levels are significantly reduced in the caudal-half somites.

View Article and Find Full Text PDF