Publications by authors named "Maria Elena Alvarez"

Article Synopsis
  • DNA glycosylases like MBD4L are essential for the base excision repair pathway that fixes damaged DNA in plants, particularly during seed imbibition.
  • Researchers found that MBD4L is more active in aged seeds, producing different gene transcripts that help with DNA repair, and its absence leads to germination issues.
  • The study suggests that MBD4L works alongside other DNA repair genes to manage damage in seeds, and without it, seeds experience genomic stress that delays or reduces germination.
View Article and Find Full Text PDF

DNA glycosylases remove mispaired or modified bases from DNA initiating the base excision repair (BER) pathway. The DNA glycosylase MBD4 (methyl-CpG-binding domain protein 4) has been functionally characterized in mammals, but not yet in plants, where it is called MBD4-like (MBD4L). Mammalian MBD4 and Arabidopsis recombinant MBD4L excise U and T mispaired with G, as well as 5-fluorouracil (5-FU) and 5-bromouracil (5-BrU) in vitro.

View Article and Find Full Text PDF

The gene pool encoding PRR and NLR immune receptors determines the ability of a plant to resist microbial infections. Basal expression of these genes is prevented by diverse mechanisms since their hyperactivity can be harmful. To approach the study of epigenetic control of / genes we here analyzed their expression in mutants carrying abnormal repressive 5-methyl cytosine (5-mC) and histone 3 lysine 9 dimethylation (H3K9me2) marks, due to lack of MET1, CMT3, MOM1, SUVH4/5/6, or DDM1.

View Article and Find Full Text PDF

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago.

View Article and Find Full Text PDF

Introduction: A possible increase in Candida resistance, especially in Candida glabrata, has been speculated according to poor diffusion of echinocandins to peritoneal fluid.

Materials/methods: Peritoneal and serum concentrations of caspofungin, micafungin and anidulafungin were analysed in surgical patients with suspected candida peritonitis. After 4 days of starting therapy, serum and peritoneal samples (through peritoneal drainage) were obtained at baseline, 1, 6, 12 and 24 h of drug administration.

View Article and Find Full Text PDF

Arabidopsis () OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway.

View Article and Find Full Text PDF

Proline dehydrogenase (ProDH) is a flavoenzyme that catalyzes the oxidation of proline (Pro) into Δ1-pyrroline-5-carboxylate (P5C). In eukaryotes, ProDH coordinates with different Pro metabolism enzymes to control energy supply or stress responses signaling. Heterologous expression and crystallization of prokaryotic enzymes provided key data on their active center, folding capacity and oligomerization status.

View Article and Find Full Text PDF

An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions.

View Article and Find Full Text PDF

Arabidopsis contains two proline dehydrogenase (ProDH) genes, ProDH1 and ProDH2, encoding for homologous and functional isoenzymes. Although ProDH1 has been studied extensively, especially under abiotic stress, ProDH2 has only started to be analysed in recent years. These genes display distinctive expression patterns and show weak transcriptional co-regulation, but are both activated in pathogen-infected tissues.

View Article and Find Full Text PDF

Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied.

View Article and Find Full Text PDF

Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified.

View Article and Find Full Text PDF

Background: Proline (Pro) dehydrogenase (ProDH) potentiates the oxidative burst and cell death of the plant Hypersensitive Response (HR) by mechanisms not yet elucidated. ProDH converts Pro into ∆1 pyrroline-5-carboxylate (P5C) and can act together with P5C dehydrogenase (P5CDH) to produce Glu, or with P5C reductase (P5CR) to regenerate Pro and thus stimulate the Pro/P5C cycle. To better understand the effects of ProDH in HR, we studied the enzyme at three stages of the defense response differing in their ROS and cell death levels.

View Article and Find Full Text PDF

Salicylic acid (SA) is one of the key hormones that orchestrate the pathogen-induced immune response in plants. This response is often characterized by the activation of a local hypersensitive reaction involving programmed cell death, which constrains proliferation of biotrophic pathogens. Here, we report the identification and functional characterization of an SA-induced legume lectin-like protein 1 (SAI-LLP1), which is coded by a gene that belongs to the group of early SA-activated Arabidopsis genes.

View Article and Find Full Text PDF

Background: The establishment of compatibility between plants and pathogens requires compliance with various conditions, such as recognition of the right host, suppression of defence mechanisms, and maintenance of an environment allowing pathogen reproduction. To date, most of the plant factors required to sustain compatibility remain unknown, with the few best characterized being those interfering with defence responses. A suitable system to study host compatibility factors is the interaction between Arabidopsis thaliana and the powdery mildew (PM) Golovinomyces cichoracearum.

View Article and Find Full Text PDF

L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated with water deprivation. In this catabolic pathway, Pro is converted to glutamate by two reactions catalyzed by proline dehydrogenase (ProDH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), with Δ(1)-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the P5C derived from Pro is converted back to Pro by P5C reductase, thus stimulating the Pro-P5C cycle, which may generate reactive oxygen species (ROS) as a consequence of the ProDH activity.

View Article and Find Full Text PDF

Plant suspension cell cultures display many features of the innate immune responses observed in planta and have been extensively applied to the study of basal and race-specific defences. However, no single model including photosynthetic cultured cells has been used for the exhaustive characterization of both basal and race-specific defences to date. In this article, we report the activation of basal and race-specific defences in green cultured cells from Arabidopsis thaliana.

View Article and Find Full Text PDF

Salicylic acid (SA) is a stress-induced hormone involved in the activation of defense genes. Here we analyzed the early genetic responses to SA of wild type and npr1-1 mutant Arabidopsis seedlings, using Complete Arabidopsis Transcriptome MicroArray (CATMAv2) chip. We identified 217 genes rapidly induced by SA (early SAIGs); 193 by a NPR1-dependent and 24 by a NPR1-independent pathway.

View Article and Find Full Text PDF

Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum.

View Article and Find Full Text PDF

Candidemia outbreaks that due to cross-infection are an emerging problem in hospitals. Typing of microorganisms is an essential tool for understanding the epidemiologic aspects of the infection. Techniques based on phenotypic characteristics are inexpensive and easy to perform but are limited by their lack of reproducibility.

View Article and Find Full Text PDF

The use of the Gram stain for determination of the presence of bacteria in respiratory secretions is described. Success of the procedure depends on the use of fresh samples of high cellular quality. The Gram stain can be used to distinguish the presence (among other organisms) of Streptococcus pneumoniae, Haemophilus influenzae, Branhamella catarrhalis enterobacteria and Pseudomonas.

View Article and Find Full Text PDF