Publications by authors named "Maria E Tuttolomondo"

Vismodegib (Erivedge®, Genentech) is a first-in-class inhibitor of the hedgehog signaling pathway for the treatment of basal cell carcinoma (BCC). The treatment currently consists of the oral administration of Erivedge® capsules. Although it has shown therapeutic efficacy in clinical trials, there are many side effects related to its systemic distribution.

View Article and Find Full Text PDF

A fast and single-step procedure is reported for the preparation of stable solutions of spherical-shaped silver nanoparticles (AgNPs) coated with lysozyme (LZ). The preparation of the AgNP@LZ nanocomposites was based on the reduction of Ag with ketyl radicals photo-generated by the UVA-photolysis of the benzoin I-2959. Both reaction precursors bind to LZ, modifying its superficial charge and conformational structure.

View Article and Find Full Text PDF

The aim of this study is to analyze the consequences of water redistribution on the structure and stability of phospholipid bilayers induced by cysteine (Cys). This interaction is studied with 1,2-dipalmitoyl- sn-glycero-3-phosphatidylcholine (DPPC) multilamellar vesicles in gel (30 °C) and liquid crystalline (50 °C) state; experimental studies were performed by means of Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and differential scanning calorimetry (DSC). The polar head sites of the lipid molecules to which water can bind are identified by competition with compounds that form hydrogen bonds, such as Cys.

View Article and Find Full Text PDF

The molecular structure and conformational properties of 2,2,2-trichloroethyl chloroformate, ClC(O)OCH2CCl3 were determined experimentally using gas-phase electron diffraction (GED) and theoretically based on quantum-chemical calculations at the MP2 and DFT levels of theory. Further experimental measurements such as UV-visible, IR and Raman spectroscopy were complemented with the corresponding theoretical studies. All experimental results and calculations confirm the presence of two conformers namely anti-gauche (C1 symmetry) and anti-anti (Cs symmetry).

View Article and Find Full Text PDF

We present molecular dynamics (MD) simulation studies of the interaction of a chemo preventive and protective agent, S-methyl methanethiosulfonate (MMTS), with a model bilayer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). We analyzed and compared its diffusion mechanisms with the related molecule dimethyl sulfoxide (DMSO). We obtained spatially resolved free energy profiles of MMTS partition into a DPPC bilayer in the liquid-crystalline phase through potential of mean force (PMF) calculations using an umbrella sampling technique.

View Article and Find Full Text PDF

In the present article, the molecular structure of S-methyl thiobutanoate, CH3CH2CH2C(O)SCH3 was determined by ab initio (MP2) and DFT calculations using different basis sets. The infrared and Raman spectra for the liquid phase were also recorded and the bands observed were assigned to the vibrational normal modes. The experimental and calculations confirm the presence of two most stable conformers, one with pseudo anti-syn conformation and another with gauche-syn conformation.

View Article and Find Full Text PDF

The molecular structure and conformational properties of S-ethyl thioacetate, CH3COSCH2CH3, were determined in the gas phase by electron diffraction and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Theoretical methods reveal two structures with Cs (anti, anti) and C1 (anti, gauche) symmetries.

View Article and Find Full Text PDF

The molecular structure and conformational properties of 2,2,2-trichloroethylacetate, CH(3)CO(2)CH(2)CCl(3), were determined by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. The theoretical study was complemented with experimental measurements such as IR and Raman spectroscopy. The experimental and calculations confirm the presence of two conformers, one with anti, gauche conformation (C1 symmetry) and another with anti, anti form (Cs symmetry).

View Article and Find Full Text PDF

The molecular structure of 2,2,2-trichloroethoxysulfonamide, CCl3CH2OSO2NH2, has been determined in the solid state by X-ray diffraction data and in the gas phase by ab initio (MP2) and DFT calculations. The substance crystallizes in the monoclinic P21/c space group with a = 9.969(3)Å, b = 22.

View Article and Find Full Text PDF

The present study is a first step towards the investigation of S-methyl methanethiosulfonate (MMTS) interaction with membrane model systems like liposomes. In this paper, the interaction of MMTS with dipalmitoylphosphatidylcholine (DPPC) bilayers was studied by FTIR and SERS spectroscopy. Lysolipid effect on vesicle stability was studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the molecular structure and conformational properties of S-ethyl trifluorothioacetate (CF(3)COSCH(2)CH(3)) using electron diffraction and vibrational spectroscopy methods.
  • Both experimental and theoretical analyses show two conformers with C(s) (anti, anti) and C(1) (anti, gauche) symmetries, with a near 50-50 mixture of the two forms in the gas phase.
  • The infrared and Raman spectra of the compound are reported across gas, liquid, and solid phases, providing evidence for both conformational structures, alongside calculations of vibrational frequencies.
View Article and Find Full Text PDF

The molecular structure of methyl methanesulfonate, CH(3)SO(2)OCH(3), has been optimized by using methods based on density functional theory, coupled cluster, and Moller-Plesset second order perturbation theory (MP2). With regard to CH(3)SO(2)OCH(3), two populated conformations with symmetries C(s) and C(1) are obtained, the former being more stable than the latter. The theoretical data indicate that although both anti and gauche conformers are possible by rotation about the S-O bond, the preferred conformation is anti.

View Article and Find Full Text PDF

The molecular structure of methyl methanethiosulfonate, CH3SO2SCH3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (HF, MP2) and density functional theory (DFT) calculations using 6-31G(d), 6-311++G(d,p), and 6-311G(3df,3pd) basis sets. Both experimental and theoretical data indicate that although both anti and gauche conformers are possible by rotating about the S-S bond, the preferred conformation is gauche. The barrier to internal rotation in the CSSC skeleton has been calculated using the RHF/6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) methods as well as MP2 with a 6-31G(3df) basis set on sulfur and 6-31G(d) on C, H, and O.

View Article and Find Full Text PDF