In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract.
View Article and Find Full Text PDFThe SIRT1 activators isonicotinamide (IsoNAM), resveratrol, fisetin, and butein repressed transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C). An evolutionarily conserved binding site for hepatic nuclear factor (HNF) 4alpha (-272/-252) was identified, which was required for transcriptional repression of the PEPCK-C gene promoter caused by these compounds. This site contains an overlapping AP-1 binding site and is adjacent to the C/EBP binding element (-248/-234); the latter is necessary for hepatic transcription of PEPCK-C.
View Article and Find Full Text PDFIn vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2007
The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups.
View Article and Find Full Text PDFThe pathways of glycerol-3-P (G3P) generation were examined in retroperitoneal (RETRO) and epididymal (EPI) adipose tissues from rats fed a cafeteria diet for 3 wk. The cafeteria diet induced marked increases in body fat mass and in the plasma levels of insulin and triacylglycerol (TAG). RETRO and EPI from cafeteria diet-fed rats had increased rates of norepinephrine turnover (143 and 60%, respectively) and of de novo fatty acid (FA) synthesis (58 and 98%), compared with controls fed a balanced commercial diet.
View Article and Find Full Text PDF