Publications by authors named "Maria E Quiros-Ortega"

Article Synopsis
  • Early breast cancer patients often relapse due to leftover cancer cells after treatment, and traditional methods struggle to detect them in low concentrations.
  • A study collected 282 high-volume blood samples to improve the detection of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) using a specialized PCR assay, successfully finding ctDNA and/or CTCs in all pre-treatment samples.
  • The method showed promise for predicting residual disease accurately and detecting relapses months in advance, making it a potentially effective tool for monitoring early breast cancer patients post-treatment.
View Article and Find Full Text PDF

Aims: Ventral pathway circuits are constituted by the interconnected brain areas that are distributed throughout the brain. These brain circuits are primarily involved in processing of object related information in brain. However, their role in object recognition memory (ORM) enhancement remains unknown.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202408000-00038/figure1/v/2023-12-16T180322Z/r/image-tiff Memory deficit, which is often associated with aging and many psychiatric, neurological, and neurodegenerative diseases, has been a challenging issue for treatment. Up till now, all potential drug candidates have failed to produce satisfactory effects.

View Article and Find Full Text PDF

Breast cancer (BC) is the most prevalent cancer in women. While usually detected when localized, invasive procedures are still required for diagnosis. Herein, we developed a novel ultrasensitive pipeline to detect circulating tumor DNA (ctDNA) in a series of 75 plasma samples from localized BC patients prior to any medical intervention.

View Article and Find Full Text PDF

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement.

View Article and Find Full Text PDF

The consolidation of new memories into long-lasting memories is multistage process characterized by distinct temporal dynamics. However, our understanding on the initial stage of transformation of labile memory of recent experience into stable memory remains elusive. Here, with the use of rats and mice overexpressing a memory enhancer called regulator of G protein signaling 14 of 414 amino acids (RGS14 ) as a tool, we show that the expression of RGS14 in male rats' perirhinal cortex (PRh), which is a brain area crucial for object recognition memory (ORM), enhanced the ORM to the extent that it caused the conversion of labile short-term ORM (ST-ORM) expected to last for 40 min into stable long-term ORM (LT-ORM) traceable after a delay of 24 hr, and that the temporal window of 40 to 60 min after object exposure not only was key for this conversion but also was the time frame when a surge in 14-3-3ζ protein was observed.

View Article and Find Full Text PDF

Memory deficits affect a large proportion of the human population and are associated with aging and many neurologic, neurodegenerative, and psychiatric diseases. Treatment of this mental disorder has been disappointing because all potential candidates studied thus far have failed to produce consistent effects across various types of memory and have shown limited to no effects on memory deficits. Here, we show that the promotion of neuronal arborization through the expression of the regulator of G-protein signaling 14 of 414 amino acids (RGS14) not only induced robust enhancement of multiple types of memory but was also sufficient for the recovery of recognition, spatial, and temporal memory, which are kinds of episodic memory that are primarily affected in patients or individuals with memory dysfunction.

View Article and Find Full Text PDF