Front Cell Infect Microbiol
September 2014
Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro.
View Article and Find Full Text PDFIn vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment.
View Article and Find Full Text PDFThe endocervical epithelium is a major reservoir for Chlamydia trachomatis in women, and genital infections are extended in their duration. Epithelial cells act as mucosal sentinels by secreting cytokines and chemokines in response to pathogen challenge and infection. We therefore determined the signature cytokine and chemokine response of primary-like endocervix-derived epithelial cells in response to a common genital serovar (D) of C.
View Article and Find Full Text PDFThe endocervix in the female reproductive tract (FRT) is susceptible to sexually transmitted pathogens such as Chlamydia trachomatis and Neisseria gonorrhoeae. Endocervical epithelial cells in vivo make innate immune mediators that likely aid in the protection from these pathogens. In vitro studies to investigate the innate epithelial cell immune response to endocervical pathogens have been hindered by the paucity of human endocervix-derived epithelial cell lines that display the differentiation proteins and functional characteristics of their site of origin.
View Article and Find Full Text PDFChlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival.
View Article and Find Full Text PDF