Publications by authors named "Maria E Lanio"

Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala.

View Article and Find Full Text PDF

Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems.

View Article and Find Full Text PDF

Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear.

View Article and Find Full Text PDF

Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface.

View Article and Find Full Text PDF

Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane.

View Article and Find Full Text PDF

Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs' intracellular action.

View Article and Find Full Text PDF

Sticholysins (Sts) I and II (StI and StII) are pore-forming proteins (PFPs), purified from the Caribbean Sea anemone Stichodactyla helianthus. StII encapsulated into liposomes induces a robust antigen-specific cytotoxic CD8 T lymphocytes (CTL) response and in its free form the maturation of bone marrow-derived dendritic cells (BM-DCs). It is probable that the latter is partially supporting in part the immunomodulatory effect on the CTL response induced by StII-containing liposomes.

View Article and Find Full Text PDF

Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear.

View Article and Find Full Text PDF

Sticholysin I (StI) is a toxin produced by the sea anemone Stichodactyla helianthus and belonging to the actinoporins family. Upon binding to sphingomyelin-containing membranes StI forms oligomeric pores, thereby leading to cell death. According to recent controversial experimental evidences, the pore architecture of actinoporins is a debated topic.

View Article and Find Full Text PDF

Cross-presentation is an important mechanism for the differentiation of effector cytotoxic T lymphocytes (CTL) from naïve CD8 T-cells, a key response for the clearance of intracellular pathogens and tumors. The liposomal co-encapsulation of the pore-forming protein sticholysin II (StII) with ovalbumin (OVA) (Lp/OVA/StII) induces a powerful OVA-specific CTL activation and an anti-tumor response . However, the pathway through which the StII contained in this preparation is able to induce antigen cross-presentation and the type of professional antigen presenting cells (APCs) involved have not been elucidated.

View Article and Find Full Text PDF

Sticholysin I and II (Sts: St I and St II) are proteins of biomedical interest that form pores upon the insertion of their N-terminus in the plasma membrane. Peptides spanning the N-terminal residues of StI (StI) or StII (StII) can mimic the permeabilizing ability of these toxins, emerging as candidates to rationalize their potential biomedical applications. These peptides have different activities that correlate with their hydrophobicity.

View Article and Find Full Text PDF

Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that being secreted as soluble monomers are able to bind and permeabilize membranes leading to cell death. The interest in these proteins has risen due to their high cytotoxicity that can be properly used to design immunotoxins against tumor cells and antigen-releasing systems to cell cytosol. In this work we describe a novel actinoporin produced by Anthopleura nigrescens, an anemone found in the Central American Pacific Ocean.

View Article and Find Full Text PDF

Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis.

View Article and Find Full Text PDF

Sticholysin II (StII) is a pore-forming actinoporin from the sea anemone Stichodactyla helianthus. A mechanistic model of its action has been proposed: proteins bind to cell membrane, insert their N-termini into the lipid core and assemble into homo-tetramer pores responsible for host-cell death. Because very likely the first 10 residues of StII N-terminus are critical for membrane penetration, to dissect the molecular details of that functionality, we studied two synthetic peptides: StII and StII .

View Article and Find Full Text PDF

Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells.

View Article and Find Full Text PDF

Sticholysin II is a pore-forming toxin produced by the sea anemone Stichodactyla helianthus that belongs to the actinoporin protein family. The high affinity of actinoporins for sphingomyelin (SM)-containing membranes has been well documented. However, the molecular determinants that define this affinity have not been fully clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccine strategies are facing challenges in enhancing CD8 T cell responses due to the need for antigens to bypass cellular membranes for better presentation in antigen-presenting cells (APCs).
  • A new approach using sticholysin II (StII), a pore-forming protein from a Caribbean sea anemone, shows promise; it was encapsulated with ovalbumin (OVA) in liposomes to improve CTL activation and memory response in mice.
  • The study found that mice treated with the OVA-StII liposomes had stronger anti-tumor effects and CTL responses, indicating that StII may also help mature dendritic cells and function as an effective adjuvant in vaccine development.
View Article and Find Full Text PDF

Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends on the toxin concentration and the properties of the pores.

View Article and Find Full Text PDF
Article Synopsis
  • The crystallographic data indicates that a small hydrophobic interaction surface is crucial for the oligomerization and pore formation of actinoporins, particularly fraC.
  • Disrupting specific interactions (V60 and F163) in fragaceatoxin C and other actinoporins significantly impacts their ability to form pores in membranes.
  • The study supports the hybrid pore model for actinoporins and emphasizes the role of dimer formation as a key step in the assembly of pore-forming proteins.
View Article and Find Full Text PDF

Liposomes containing phosphatidylcholine have been widely used as adjuvants. Recently, we demonstrated that B-1 cells produce dipalmitoyl-phosphatidylcholine (DPPC)-specific IgM upon immunization of BALB/c mice with DPPC-liposomes encapsulating ovalbumin (OVA). Although this preparation enhanced the OVA-specific humoral response, the contribution of anti-DPPC antibodies to this effect was unclear.

View Article and Find Full Text PDF

Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT. As for actinoporins, it has been proposed that the presence of cholesterol (Chol) and the coexistence of lipid phases increase binding to the target membrane and pore-forming ability. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, and the presence of lipid domains) on the activity of actinoporins or which regions of the membrane are the most favorable for protein insertion, oligomerization, and eventually pore formation.

View Article and Find Full Text PDF
Article Synopsis
  • Actinoporins are pore-forming toxins from sea anemones, primarily studied in species like Stichodactyla helianthus and Actinia equina, with a focus on their N-terminal sequences for pore formation.
  • The study reveals that the hydrophobic nature of the first 10 amino acids in these toxins plays a crucial role in their ability to cause hemolysis and permeabilization of membranes.
  • Analysis indicates that the N-terminus of StII penetrates deeper into cell membranes than StI, suggesting that greater hydrophobicity enhances the toxins' activity and may inform the design of new membrane-targeting agents.
View Article and Find Full Text PDF

A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain.

View Article and Find Full Text PDF

Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT exclusively found in sea anemones. As for actinoporins, it has been proposed that the presence of sphingomyelin (SM) and the coexistence of lipid phases increase binding to the target membrane. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, presence of lipid domains) on actinoporins' activity or which regions of the membrane are the most favorable platforms for protein insertion.

View Article and Find Full Text PDF

B-1 lymphocytes comprise a unique subset of B cells that differ phenotypically, ontogenetically and functionally from conventional B-2 cells. A frequent specificity of the antibody repertoire of peritoneal B-1 cells is phosphatidylcholine. Liposomes containing phosphatidylcholine have been studied as adjuvants and their interaction with dendritic cells and macrophages has been demonstrated.

View Article and Find Full Text PDF