The photolysis at 254 nm of lithium iodide and olefins 1 carrying an electron-withdrawing Z-substituent in CO-saturated (1 bar) anhydrous acetonitrile at room temperature produces the atom efficient and transition metal-free photoiodocarboxylation of the C═C double bond. The reaction proceeds well for terminal olefins 1 to form the new C-I and C-C σ-bonds at the α and β-positions of the Z-substituent, respectively, and is strongly inhibited by polar protic solvents or additives. The experimental results suggest that the reaction channels through the radical anion [CO] in acetonitrile, yet involves different intermediates in aqueous medium.
View Article and Find Full Text PDFThe photolysis of triethylamine (1a) in the presence of carbon dioxide leads to the hydrogenation of CO, the α-C-C coupling of 1a, and the CO insertion into the α-C-H σ-bond of amine 1a. This reaction is proposed to proceed through the radical ion pair [RN·CO] generated by the photoionization of amine 1a and the electron capture by CO. The presence of lithium tetrafluoroborate in the reaction medium promotes the efficient and stereoselective α-C-C coupling of 1a by enhancing the production of α-dialkylamino radicals and the isomerization of N,N,N',N'-tetraethylbutane-2,3-diamine (4a).
View Article and Find Full Text PDFLithium β-ketocarboxylates 1(COOLi), prepared by the reaction of lithium enolates 2(Li) with carbon dioxide, readily undergo decarboxylative disproportionation in THF solution unless in the presence of lithium salts, in which case they are indefinitely stable at room temperature in inert atmosphere. The availability of stable THF solutions of lithium β-ketocarboxylates 1(COOLi) in the absence of carbon dioxide allowed reactions to take place with nitrogen bases and alkyl halides 3 to give α-alkyl ketones 1(R) after acidic hydrolysis. The sequence thus represents the use of carbon dioxide as a removable directing group for the selective monoalkylation of lithium enolates 2(Li).
View Article and Find Full Text PDFThe photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO capture coupled with H S removal may have been relevant as a prebiotic carbon dioxide fixation.
View Article and Find Full Text PDFEthanol () inhibits SN1 reactions of alkyl halides in supercritical carbon dioxide (scCO2) and gives no ethers as products. The unexpected behaviour of alcohols in the reaction of alkyl halides with 1,3-dimethoxybenzene () in scCO2 under different conditions is rationalised in terms of Brønsted and Lewis acid-base equilibria of reagents, intermediates, additives and products in a singular solvent characterised by: (i) the strong quadrupole and Lewis acid character of carbon dioxide, which hinders SN2 paths by strongly solvating basic solutes; (ii) the weak Lewis base character of carbon dioxide, which prevents it from behaving as a proton sink; (iii) the compressible nature of scCO2, which enhances the impact of preferential solvation on carbon dioxide availability for the solvent-demanding rate determining step.
View Article and Find Full Text PDFThe rate constants for the epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica (1a) and meta-chloroperbenzoic acid (mCPBA) (1b) in different solvents have been determined at temperatures in the -10 to 40 °C range. The heterogeneous epoxidation exhibits a dependence of the reaction rate on solvent polarity opposite to its homogeneous counterpart and anomalous activation parameters in n-hexane, which are interpreted in terms of the surface-promoted solvent structure at the solid-liquid interface. The results show that highly polar solvents can strongly inhibit heterogeneous reactions performed with silica-supported reagents or catalysts.
View Article and Find Full Text PDFAnhydrous [2-percarboxyethyl] functionalized silica (2a) is an advantageous oxidant for performing the epoxidation of olefins 1. Epoxides 3 do not undergo the ring-opening reactions catalyzed by the acidic silica surface, except for particularly activated cases such as styrene oxide. The hydrophilic and acidic character of the silica surface does not interfere with the directing effects exerted by allylic H-bond acceptor substituents.
View Article and Find Full Text PDFAnhydrous 2-percarboxyethyl-functionalized silica (2b), a recyclable supported peracid, is a suitable reagent to perform the epoxidation of alkenes 1 in supercritical carbon dioxide at 250 bar and 40 °C under flow conditions. This procedure simplifies the isolation of the reaction products and uses only carbon dioxide as a solvent under mild conditions. The solid reagent 2b can be easily recycled by a reaction with 30% hydrogen peroxide in an acid medium.
View Article and Find Full Text PDFThe oxygenation of n-butyl and n-butoxy chains bonded to silica with methyl(trifluoromethyl)dioxirane (1) revealed the ability of the silica matrix to release electron density toward the reacting C(2)-H σ-bond through the Si-C(1) and Si-O(1) σ-bonds connecting the alkyl chain to the surface (silicon β-effect). The silica surface impedes neither the alkyl chain adopting the conformation required for the silicon β-effect nor dioxirane 1 approaching the reactive C(2) methylene group. Reaction regioselectivity is insensitive to changes in the solvation of the reacting system, the location of organic ligands on the silica surface, and the H-bonding character of the silica surface.
View Article and Find Full Text PDFEven in the context of hydrocarbons' general resistance to selective functionalization, methane's volatility and strong bonds pose a particular challenge. We report here that silver complexes bearing perfluorinated indazolylborate ligands catalyze the reaction of methane (CH(4)) with ethyl diazoacetate (N(2)CHCO(2)Et) to yield ethyl propionate (CH(3)CH(2)CO(2)Et). The use of supercritical carbon dioxide (scCO(2)) as the solvent is key to the reaction's success.
View Article and Find Full Text PDFTwo simple and straightforward procedures for determining the organic content of hybrid silica materials by means of conventional NMR and GC/MS techniques are described. The methods involve dissolving the hybrid material either in a concentrated solution of sodium hydroxide in deuterated water containing a suitable reference or in a solution of hydrogen fluoride in water and extracting with methylene chloride. These methods constitute useful routine techniques for obtaining immediate information concerning both the amount and chemical composition of the organic compounds on the silica surface.
View Article and Find Full Text PDF1,1,1-Trifluoroacetone (2a) reacts as a hydride-acceptor in the Oppenauer oxidation of secondary alcohols (1) in the presence of diethylethoxyaluminum. The oxidant allows for selective oxidation of secondary alcohols in the presence of primary alcohols.
View Article and Find Full Text PDFSupercritical carbon dioxide (scCO2) is an efficient reaction medium to perform the Baeyer-Villiger oxidation with hydrated silica-supported potassium peroxomonosulfate (h-SiO2.KHSO5) under flow-through conditions. Hydration modulates the reactivity of the active surface by softening the acidity of the KHSO4 present in the supported reagent.
View Article and Find Full Text PDFSupercritical carbon dioxide (scCO2) is an effective reaction medium to perform the oxidation of primary and secondary aliphatic alcohols to the corresponding carbonyl compounds with chromium trioxide supported on silica. These reactions were performed by flowing a solution of the alcohol in scCO2 through a column containing the supported reagent and recovering the product by depressurization. This method avoids the use of organic solvents and the contamination of the products with chromium species.
View Article and Find Full Text PDF[reaction: see text] Potassium peroxomonosulfate deposited onto silica SiO2 x KHSO5 efficiently reacts with ketones in dichloromethane at room temperature to give the corresponding esters or lactones in quantitative yields. This method avoids hydrolysis of the reaction products. The Baeyer-Villiger reaction is catalyzed by potassium hydrogensulfate present in the supported reagent.
View Article and Find Full Text PDF[Chemical reaction: See text] The mechanism of the oxygenation of alkane C-H bonds with methyl(trifluoromethyl)dioxirane (1a) is studied through the effect of the substituent and solvent on the rate of oxygenation of 2-substituted adamantanes (2). The results suggest a remarkable electron deficiency at the reacting carbon atom in the transition state leading to the regular oxygenation products. The linearity of the Hammett plot reveals that the reaction mechanism does not change within a range of 0.
View Article and Find Full Text PDF[reaction: see text] Data on the apparent dipole moment of thianthrene-5-oxide (1) and (1)H NMR spectra in different solvents support the conformational mobility of 1, which flaps between two limit boat conformations with the sulfinyl group in pseudoequatorial and pseudoaxial positions, respectively. The conformational equilibrium of 1 occurs too fast for the (1)H NMR (500 MHz) time-scale even at -130 degrees C, and the equilibrium constant has not been determined. The apparent dipole moments of 1 in n-hexane and 1,4-dioxane and the (1)H NMR spectra of 1 and the model compounds cis- and trans-thianthrene-5,10-dioxides (2) and thianthrene (5) in different solvents and at various temperatures confirm that the relative position of the conformational equilibrium of 1 is solvent-dependent, and more polar solvents favor the conformation with the sulfoxide group in the pseudoaxial position (1(')(ax)).
View Article and Find Full Text PDFThe detailed study of the oxidation of thianthrene 5-oxide (1) with methyl(trifluoromethyl)dioxirane (5b) in different solvents and in the presence of (18)O isotopic tracers is reported. Thianthrene 5-oxide (1) is a flexible molecule in solution, and this property allows for transannular interaction of the sulfoxide group with the expected zwitterionic 7 and hypervalent 10-S-4 sulfurane 9 intermediates formed in the oxidation and biases the course of the reaction toward the monooxygenation pathway.
View Article and Find Full Text PDFEarlier studies established that dimethyldioxirane (1a) reacts with sulfides 2 in two consecutive concerted electrophilic oxygen-transfer steps to give first sulfoxides 3 and then sulfones 4. The same sequential electrophilic oxidation model was assumed for the reaction of sulfides 2 with the strongly electrophilic methyl(trifluoromethyl)dioxirane (1b). In this paper we report on a systematic and general study on the mechanism of the reaction of simple sulfides 2 with DMDO (1a) and TFDO (1b) which provides clear evidence for the involvement of hypervalent sulfur species in the oxidation process.
View Article and Find Full Text PDFThe epoxidation rate constants for the reaction of allylic and homoallylic primary and quaternary ammonium salts with DMDO (1b) and m-CPBA (2), as well as the stereochemical outcome of these reactions, were determined. The presence of an ionic functional group in the substrate complicates the kinetic study of the reaction. However, k(0) can be determined from the k(obs) values measured in solutions with different ionic strengths.
View Article and Find Full Text PDF