Proteins' extraordinary performance in recognition and catalysis has led to their use in a range of applications. However, proteins obtained from natural sources are oftentimes not suitable for direct use in industrial or diagnostic setups. Natural proteins, evolved to optimally perform a task in physiological conditions, usually lack the stability required to be used in harsher conditions.
View Article and Find Full Text PDFThe increasing demand pressures the vegetable oil industry to develop novel refining methods. Degumming with type C phospholipases (PLCs) is a green technology and provides extra oil. However, natural PLCs are not active under the harsh conditions used in oil refining plants, requiring additional unit operations.
View Article and Find Full Text PDFThe implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids.
View Article and Find Full Text PDFVegetable oil-derived biodiesels have a major quality problem due to the presence of precipitates formed by steryl glucosides, which clog filters and injectors of diesel engines. An efficient, scalable, and cost-effective method to hydrolyze steryl glucosides using thermostable enzymes has been developed. Here, methods to discover, express in recombinant microorganisms and manufacture enzymes with SGase activity, as well as methods to treat biodiesel with such enzymes, and to measure the content of steryl glucosides in biodiesel samples are presented.
View Article and Find Full Text PDFThe growing demand for food and biofuels urges the vegetable oil processing industry to adopt cleaner technologies to mitigate the environmental pollution caused by chemical refining processes. Over the past decade, several enzymatic methods have proven to be efficient at reducing the generated waste, but improving the benefit-cost ratio is still necessary for the widespread adoption of this technology. In this work, we show that lecithin:cholesterol acyltransferase from Aeromonas enteropelogenes (LCAT) provides a higher extra-yield of soybean oil than a type A1 phospholipase (PLA) enzyme currently commercialized for soybean oil deep degumming.
View Article and Find Full Text PDFPhospholipids play a central role in all living organisms. Phospholipases, the enzymes aimed at modifying phospholipids, are consequently widespread in nature and play diverse roles, from lipid metabolism and cellular signaling in eukaryotes to virulence and nutrient acquisition in microbes. Phospholipases catalyze the hydrolysis of one or more ester or phosphodiester bonds of glycerophospholipids.
View Article and Find Full Text PDFβγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca-binding proteins with a large diversity and variable properties in Ca binding and stability.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
February 2018
Extremophilic microorganisms are a rich source of enzymes, the enzymes which can serve as industrial catalysts that can withstand harsh processing conditions. An example is thermostable β-glucosidases that are addressing a challenging problem in the biodiesel industry: removing steryl glucosides (SGs) from biodiesel. Steryl glucosidases (SGases) must be tolerant to heat and solvents in order to function efficiently in biodiesel.
View Article and Find Full Text PDFEnzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.
View Article and Find Full Text PDFEnzymatic oil degumming (removal of phospholipids) using phospholipase C (PLC) is a well-established and environmentally friendly process for vegetable oil refining. In this work, we report the production of recombinant Bacillus cereus PLC in Corynebacterium glutamicum ATCC 13869 in a high cell density fermentation process and its performance in soybean oil degumming. A final concentration of 5.
View Article and Find Full Text PDFThe efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent "silent" nature, synonymous codon substitutions have long been thought to be trivial.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) have been identified in a wide range of bacteria, yet little is known of their biogenesis. It has been proposed that OMVs can act as long-range toxin delivery vectors and as a novel stress response. We have found that the formation of OMVs in the gram-negative opportunistic pathogen Serratia marcescens is thermoregulated, with a significant amount of OMVs produced at 22 or 30°C and negligible quantities formed at 37°C under laboratory conditions.
View Article and Find Full Text PDFSerratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens.
View Article and Find Full Text PDFThe enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade.
View Article and Find Full Text PDFDespite being considered a relatively simple form of life, bacteria have revealed a high degree of structural organization, with the spatial destination of their components precisely regulated within the cell. Nevertheless, the primary signals that dictate differential distribution of cellular building blocks and physiological processes remain in most cases largely undisclosed. Signal transduction systems are no exception within this three-dimensional organization and two-component systems (TCS) involved in controlling cell division, differentiation, chemotaxis and virulence show specific and/or dynamic localization, engaging in the spatial program of the bacterial cell.
View Article and Find Full Text PDFRob is a member of the Sox/Mar subfamily of AraC/XylS-type transcriptional regulators implicated in bacterial multidrug, heavy metal, superoxide, and organic solvent resistance phenotypes. We demonstrate that, in Salmonella enterica, Rob overexpression upregulates the transcription of mgtA, which codes for the MgtA Mg2+ transporter. mgtA was previously characterized as a member of the Mg2+-modulated PhoPQ regulon.
View Article and Find Full Text PDFSerratia marcescens strains are ubiquitous bacteria isolated from environmental niches, such as soil, water, and air, and also constitute emergent nosocomial opportunistic pathogens. Among the numerous extracellular factors that S. marcescens is able to produce, the PhlA phospholipase is the only described exoprotein secreted by the flagellar apparatus while simultaneously being a member of the flagellar regulon.
View Article and Find Full Text PDFThe PhoP/PhoQ two-component system controls the extracellular magnesium depletion response in Salmonella enterica. Previous studies have shown that PhoP is unable to up-regulate its target genes in the absence of PhoQ function. In this work, we demonstrate that PhoP overexpression can substitute for PhoQ- and phosphorylation-dependent activation.
View Article and Find Full Text PDFIn two-component signaling systems, the transduction strategy relies on a conserved His-Asp phosphoryl exchange between the sensor histidine kinase and its cognate response-regulator, and structural and functional consensus motifs are found when comparing either the diverse histidine kinases or response regulators present in a single cell. Therefore, the mechanism that guarantees the specific recognition between partners of an individual pair is essential to unequivocally generate the appropriate adaptive response. Based on sequence alignments with other histidine kinases, we dissected the Salmonella enterica Mg2+-sensor PhoQ in different subdomains and examined by in vivo and in vitro assays its interaction with the associated response regulator PhoP.
View Article and Find Full Text PDF