Publications by authors named "Maria Dolores Sequedo"

Article Synopsis
  • Huntington's disease (HD) is a rare, genetic neurodegenerative disorder caused by mutant huntingtin protein with excessive glutamines, leading to toxicity and protein aggregation in neurons.
  • A new compound, Mn(II) quinone complex (4QMn), acts as an artificial superoxide dismutase and has been shown to enhance protein clearance pathways, including the ubiquitin-proteasome system and autophagy, in HD models.
  • By activating these pathways, 4QMn can help degrade toxic proteins associated with HD, suggesting it may be a promising candidate for developing effective therapies for the disease.
View Article and Find Full Text PDF

Huntington disease is a neurodegenerative condition for which there is no cure to date. Activation of AMP-activated protein kinase has previously been shown to be beneficial in in vitro and in vivo models of Huntington's disease. Moreover, a recent cross-sectional study demonstrated that treatment with metformin, a well-known activator of this enzyme, is associated with better cognitive scores in patients with this disease.

View Article and Find Full Text PDF

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited, dominant neurodegenerative disorder caused by an abnormal expansion of CAG triplets in the huntingtin gene (htt). Despite extensive efforts to modify the progression of HD thus far only symptomatic treatment is available. Recent work suggests that treating invertebrate and mice HD models with metformin, a well-known AMPK activator which is used worldwide to treat type 2-diabetes, reduces mutant huntingtin from cells and alleviates many of the phenotypes associated to HD.

View Article and Find Full Text PDF

The adenosine monophosphate activated kinase protein (AMPK) is an evolutionary-conserved protein important for cell survival and organismal longevity through the modulation of energy homeostasis. Several studies suggested that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. However, in Huntington's disease (HD), AMPK may be activated in the striatum of HD mice at a late, post-symptomatic phase of the disease, and high-dose regiments of the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide may worsen neuropathological and behavioural phenotypes.

View Article and Find Full Text PDF

RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5-trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues.

View Article and Find Full Text PDF

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: