In the present study, commercially pure titanium was irradiated with UV-light with varying wavelengths using a Q-switched Nd:YAG-laser. This was performed in order to investigate if a laser treatment can be employed to rapidly introduce hydrophilic properties to titanium surfaces, which is believed to facilitate protein adsorption and cell attachment. It was demonstrated that irradiation with 355 nm light (10 Hz, 90 mJ/shot) for 1 min or more caused an ion conversion of Ti(4+) to Ti(3+) sites in the surface oxide which lead to an increase in hydrophilicity of the surface.
View Article and Find Full Text PDFPurpose: To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants.
Materials And Methods: A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively.