Background: Studies on complexity indicators in the field of functional connectivity derived from resting-state fMRI (rs-fMRI) in Down syndrome (DS) samples and their possible relationship with cognitive functioning variables are rare. We analyze how some complexity indicators estimated in the subareas that constitute the default mode network (DMN) might be predictors of the neuropsychological outcomes evaluating Intelligence Quotient (IQ) and cognitive performance in persons with DS.
Methods: Twenty-two DS people were assessed with the Kaufman Brief Test of Intelligence (KBIT) and Frontal Assessment Battery (FAB) tests, and fMRI signals were recorded in a resting state over a six-minute period.
Behav Brain Res
May 2021
Emerging evidence suggests that an effective or functional connectivity network does not use a static process over time but incorporates dynamic connectivity that shows changes in neuronal activity patterns. Using structural equation models (SEMs), we estimated a dynamic component of the effective network through the effects (recursive and nonrecursive) between regions of interest (ROIs), taking into account the lag 1 effect. The aim of the paper was to find the best structural equation model (SEM) to represent dynamic effective connectivity in people with Down syndrome (DS) in comparison with healthy controls.
View Article and Find Full Text PDFBackground: Down syndrome (DS) is a chromosomal disorder that causes intellectual disability. Few studies have been conducted on functional connectivity using resting-state fMRI (functional magnetic resonance imaging) signals or more specifically, on the relevant structure and density of the default mode network (DMN). Although data on this issue have been reported in adult DS individuals (age: >45 years), the DMN properties in young DS individuals have not been studied.
View Article and Find Full Text PDF