Objective: To develop and validate a deep-learning classifier trained on voice data extracted from videolaryngostroboscopy recordings, differentiating between three different vocal fold (VF) states: healthy (HVF), unilateral paralysis (UVFP), and VF lesions, including benign and malignant pathologies.
Methods: Patients with UVFP (n = 105), VF lesions (n = 63), and HVF (n = 41) were retrospectively identified. Voice samples were extracted from stroboscopic videos (Pentax Laryngeal Strobe Model 9400), including sustained /i/ phonation, pitch glide, and /i/ sniff task.