Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures.
View Article and Find Full Text PDFAlemtuzumab is approved for highly active MS and, in Europe, can be employed after other disease-modifying treatments (DMTs) as an escalation approach or first therapeutic option. The occurrence of secondary autoimmune adverse events and infections differs depending on the employed approach. In the manuscript entitled "Alemtuzumab treatment of multiple sclerosis in real-world clinical practice: report from a single Italian center" by di Ioia M.
View Article and Find Full Text PDFMetabolomics based on mass spectrometry represents an innovative approach to characterize multifactorial diseases, such as multiple sclerosis (MuS). To date, the most important biomarker source for MuS diagnosis is the cerebrospinal fluid. However, an important goal for research is to identify new molecules in more easily accessible biological fluids.
View Article and Find Full Text PDFMultiple sclerosis (MuS) is an autoimmune disease of the central nervous system characterized by neuroinflammation, neurodegeneration, and degradation of the myelin sheath. Epidemiological studies have shown that the female gender is more susceptible than the male gender to MuS development, with a female-to-male ratio of 2:1. Despite this high onset, women have a better prognosis than men, and the frequency of the relapsing phase decreases during pregnancy, while it increases soon after birth.
View Article and Find Full Text PDFMultiple Sclerosis (MuS) is a complex multifactorial neuropathology, resulting in heterogeneous clinical presentation. A very active MuS research field concerns the discovery of biomarkers helpful to make an early and definite diagnosis. The sphingomyelin pathway has emerged as a molecular mechanism involved in MuS, since high levels of ceramides in cerebrospinal fluid (CSF) were related to axonal damage and neuronal dysfunction.
View Article and Find Full Text PDFBackground: Alemtuzumab, approved for multiple sclerosis (MS), can cause secondary autoimmune adverse events including thyroid disorders, immune thrombocytopenia (ITP), and glomerular nephropathies. Non-ITP autoimmune cytopenias are rarely reported.
Objective: To report a case of autoimmune hemolytic anemia (AIHA) and nephropathy in a MS patient treated with alemtuzumab.
Personalized medicine is the science of individualized prevention and therapy. In the last decade, advances in high-throughput approaches allowed the development of proteomic and metabolomic studies in evaluating the association of genetic and phenotypic variability with disease sensitivity and analgesic response. These considerations have more value in case of multiple sclerosis (MuS), a multifactorial disease with high heterogeneity in clinical course and treatment response.
View Article and Find Full Text PDFMultiple Sclerosis (MuS) is a disease caused due to an autoimmune attack against myelin components in which non proteic mediators may play a role. Recent research in metabolomics and lipidomics has been driven by rapid advances in technologies such as mass spectrometry and computational methods. They can be used to study multifactorial disorders like MuS, highlighting the effects of disease on metabolic profiling, regardless of the multiple trigger factors.
View Article and Find Full Text PDFProteomics and metabolomics investigations of body fluids present several challenges for biomarker discovery of several diseases. The search for biomarkers is actually conducted in different body fluids, even if the ideal biomarker can be found in an easily accessible biological fluid, because, if validated, the biomarker could be sought in the healthy population. In this regard, tears could be considered an optimum material obtained by noninvasive procedures.
View Article and Find Full Text PDFInterferon beta (IFNβ) was the first specific disease-modifying treatment licensed for relapsing-remitting multiple sclerosis, and is still one of the most commonly prescribed treatments. A strong body of evidence supports the effectiveness of IFNβ preparations in reducing the annual relapse rate, magnetic resonance (MRI) disease activity and disease progression. However, the development of binding/neutralizing antibodies (BAbs/NAbs) during treatment negatively affects clinical and MRI outcomes.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and mainly affects young adults. Its natural history has changed in recent years with the advent of disease-modifying drugs, which have been available since the early 1990s. The increasing number of first-line and second-line treatment options, together with the variable course of the disease and patient lifestyles and expectations, makes the therapeutic decision a real challenge.
View Article and Find Full Text PDFTransthyretin (TTR) is a homotetrameric protein of the CNS that plays a role of as the major thyroxine (T4) carrier from blood to cerebrospinal fluid (CSF). T4 physiologically helps oligodendrocyte precursor cells to turn into myelinating oligodendrocytes, enhancing remyelination after myelin sheet damage. We investigated post-translational oxidative modifications of serum and CSF TTR in multiple sclerosis subjects, highlighting high levels of S-sulfhydration and S-sulfonation of cysteine in position ten only in the cerebral TTR, which correlate with an anomalous TTR protein folding as well as with disease duration.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh) is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS) patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF) and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND).
View Article and Find Full Text PDFBackground: Achieving good adherence to self-injected treatments for multiple sclerosis can be difficult. Injection devices may help to overcome some of the injection-related barriers to adherence that can be experienced by patients. We sought to assess short-term adherence to, and tolerability of, interferon (IFN) β-1a administered via electronic autoinjection device in patients with relapsing-remitting multiple sclerosis (RRMS).
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a neurodegenerative autoimmune demyelinating disease affecting young adults. The aetiology still remains a mystery and diagnosis is impaired by the lack of defined molecular markers. Autoimmune response remains the main topic under investigation and recent studies suggest additional non-proteic mediators of brain inflammation such as lipids.
View Article and Find Full Text PDFRecently, Irani and colleagues proposed a C-terminal cleaved isoform cystatin C (12.5 kDa) in cerebrospinal fluid as a marker of multiple sclerosis. In this study, we demonstrate that the 12.
View Article and Find Full Text PDF