Publications by authors named "Maria Del Rosario Bauza"

Background: Gene therapy has been proposed as a strategy to induce cardiac regeneration following acute myocardial infarction (AMI). Given that Tbx20, a transcription factor of the T-box subfamily, stimulates cell proliferation and angiogenesis, we designed a baculovirus overexpressing (Bv-Tbx20) and evaluated its effects in cultured cardiomyocytes and in an ovine model of AMI.

Methods And Results: Cell proliferation and angiogenesis were measured in cardiomyocytes transduced with Bv-Tbx20 or Bv-Null (control).

View Article and Find Full Text PDF

Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division.

View Article and Find Full Text PDF

Background Aims: Peripheral arterial disease (PAD) is a progressive, disabling ailment for which no effective treatment exists. Gene therapy-mediated neovascularization has emerged as a potentially useful strategy. We tested the angiogenic and arteriogenic efficacy and safety of a baculovirus (BV) encoding mutant, oxygen-resistant hypoxia-inducible factor 1-alpha (mHIF-1α), in rabbits with PAD.

View Article and Find Full Text PDF

The adult mammalian cardiomyocyte has a very limited capacity to reenter the cell cycle and advance into mitosis. Therefore, diseases characterized by lost contractile tissue usually evolve into myocardial remodeling and heart failure. Analyzing the cardiac transcriptome at different developmental stages in a large mammal closer to the human than laboratory rodents may serve to disclose positive and negative cardiomyocyte cell cycle regulators potentially targetable to induce cardiac regeneration in the clinical setting.

View Article and Find Full Text PDF

In rodents with acute myocardial infarction (AMI), high mobility group box 1 (HMGB1) injection has produced controversial results. Given the lack of data in large mammals, we searched the dose that would promote angiogenesis and expression of specific regenerative genes in sheep with AMI (protocol 1) and, subsequently, use this dose to study long-term effects on infarct size and left ventricular (LV) function (protocol 2). Protocol 1: Sheep with AMI received 250 μg (high-dose, n = 7), 25 μg (low-dose, n = 7) HMGB1, or PBS (placebo, n = 7) in 10 intramyocardial injections (0.

View Article and Find Full Text PDF

Diaphragmatic myoblasts (DM) are stem cells of the diaphragm, a muscle displaying high resistance to stress and exhaustion. We hypothesized that DM modified to overexpress connexin-43 (cx43), seeded on aligned poly (l-lactic acid) (PLLA) sheets would decrease infarct size and improve ventricular function in sheep with acute myocardial infarction (AMI). Sheep with AMI received PLLA sheets without DM (PLLA group), sheets with DM (PLLA-DM group), sheets with DM overexpressing cx43 (PLLA-DMcx43) or no treatment (control group, n = 6 per group).

View Article and Find Full Text PDF

Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity.

View Article and Find Full Text PDF