Publications by authors named "Maria Del Pilar Taboada Sotomayor"

A molecularly imprinted polymer (MIP) has been synthetized, characterized, impregnated on paper, and integrated into a 3D printed platform with smartphone-based fluorescent detection for the determination of tetracycline in water samples. The MIP synthesis was performed by precipitation polymerization, which was subsequently deposited onto a glass microfiber paper. The synthesized polymer and the MIP@paper have been characterized by FTIR spectroscopy, scanning electron microscopy, and EDS spectroscopy.

View Article and Find Full Text PDF

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization.

View Article and Find Full Text PDF

This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was coated with MIP using the precipitation polymerization method. The analysis of MIP immobilization on the functionalized optical fiber (FF) was conducted through the use of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques.

View Article and Find Full Text PDF

Exosomes are nanovesicles present in all the biological fluids, making them attractive as non-invasive biomarkers for diseases like cancer, among many others. However, exosomes are complex to separate and detect, requiring comprehensive molecular characterization for their routine use in diagnostics. This study explores the use of peptides as cost-effective and stable alternatives to antibodies for exosome binding.

View Article and Find Full Text PDF

In this paper, we present an alternative technique for the removal of Brilliant Green dye (BG) in aqueous solutions based on the application of molecularly imprinted polymer (MIP) as a selective adsorbent for BG. The MIP was prepared by bulk radical polymerization using BG as the template; methacrylic acid (MAA) as the functional monomer, selected via computer simulations; ethylene glycol dimethacrylate (EGDMA) as cross-linker; and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the radical initiator. Scanning electron microscopy (SEM) analyses of the MIP and non-molecularly imprinted polymer (NIP)-used as the control material-showed that the two polymers exhibited similar morphology in terms of shape and size; however, N sorption studies showed that the MIP displayed a much higher BET surface (three times bigger) compared to the NIP, which is clearly indicative of the adequate formation of porosity in the former.

View Article and Find Full Text PDF

This work reports the development and application of a highly selective core@shell-based quantum dot-molecularly imprinted polymer (QD@MIP) sensor for the detection of sulfadiazine (SDZ)-an antibiotic which belongs to the sulfonamide family. The synthesis of the smart material or MIP (molecularly imprinted polymer) was carried out by a precipitation method directly on the quantum dot surface, which played the role of a fluorescent probe in the optical sensor. The synthesized polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Magnetic molecularly imprinted polymers (MMIPs) contain the predesigned specialized recognition capability that can be chosen to build credible functional materials, that are easy to handle and have a good degree of specificity. Hence, the given piece of work is intended to design a novel electrochemical sensor incorporating magnetite-based molecularly imprinted polymers. The building materials consisted of a cross-linker (EGDMA), reaction-initiator (AIBN), monomer (methylene succinic acid-MSA), and template molecule (Sunset Yellow-SY dye).

View Article and Find Full Text PDF

A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (FeO) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy.

View Article and Find Full Text PDF

In this work, a new electrochemical biosensor was developed using peptides selected by Phage Display as biorecognition phase to Breast Cancer (BC) characterization. Phage clones were selected against MCF-7 (ER-positive BC) proteins, in order to characterize patients with aggressive luminal BC. Biotin-C3 and biotin-H2 peptides were chemically synthesized and validated by flow cytometry, immunofluorescence assays, and ELISA assays, being more reactive to the MCF-7 lineage.

View Article and Find Full Text PDF

Magnetic molecularly imprinted polymers (MMIPs) are constructed based on the blending of inorganic nanoparticles with molecularly imprinted polymers (MIPs). MMIPs are synthesized in a core-shell format in which inorganic nanoparticles are applied as the core part of the material while selective polymeric layers are used as the shell covering the surface of the core area. In essence, MMIPs thus reflect a combination of the best characteristics of both inorganic nanoparticles and MIPs, where the specificity of cavities imprinted on the MIP is merged with superparamagnetic properties of the nano-magnetite.

View Article and Find Full Text PDF

The present work shows the synergistic application of reflectance spectroscopy and core-shell molecularly imprinted polymer (MIP) for rapid quantification of tartrazine in soft drinks. Studies evaluated the performance of the MIPs synthesized in the presence of silica nanoparticles unfunctionalized and functionalized with [3-(methacryloyloxy)propyl]trimethoxysilane. Although the use of functionalized silica nanoparticles promoted the highest adsorption capability of tartrazine, the material was found to be less selective when it was applied in real samples.

View Article and Find Full Text PDF

This work describes an electrochemical sensor for the selective recognition and quantification of amoxicillin and a β-lactam antibiotic in real samples. This sensor consists of a carbon paste electrode (CPE) modified with mag-MIP (magnetic molecularly imprinted polymer), which was prepared by precipitation method via free radical using acrylamide (AAm) as functional monomer, N,N'-methyleneacrylamide (MBAA) as a crosslinker, and potassium persulfate (KPS) as initiator, to functionalized magnetic nanoparticles. The magnetic non-imprinted polymers (mag-NIP) were prepared using the same experimental procedure without analyte and used for the preparation of a CPE for comparative studies.

View Article and Find Full Text PDF

The present study reports the development of graphite pencil electrode modified with palladium nanoparticles (PdNPs) and its application as an electrochemical sensor for the simultaneous detection of direct yellow 50, tryptophan, carbendazim and caffeine in river water and synthetic urine samples. The combination involving the conductive surface of the graphite pencil electrode (GPE) and the enlargement of the surface area caused by the use of palladium nanoparticles (PdNPs) led to the improvement of the analytical performance of the proposed device. The surface of the GPE-PdNPs was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).

View Article and Find Full Text PDF

Two new ionic imprinted hybrid polymers (IIHP) and their corresponding non imprinted hybrid polymers (NIHP) were synthesized. The prepared IIHP was highly selective to Cd. To prepare the IIHP, 1-vinylimidazole (VIN) was used as the functional monomer, (3-mercaptopropyl) trimethoxysilane (MP) or (3-aminopropyl) trimethoxysilane (AMP) was used as the functional organosilane, trimethylolpropane (TRIM) was used as the crosslinking agent, AIBN was used as a radical initiator and TEOS was used as a functional precursor.

View Article and Find Full Text PDF

A molecularly imprinted polymer (MIP) was developed for the determination of acid violet 19 (AV19) dye. The MIP was synthesized by polymerization using 1-vinyl imidazole (functional monomer) and 2,2'-azobis(2-methylpropionitrile) as the radical initiator. The functional monomer was previously selected by computational simulations.

View Article and Find Full Text PDF

A new biomimetic sensor was prepared on carbon paste with magnetic molecularly imprinted polymer (mag-MIP) for sensitive and selective detection of methyl green dye. The mag-MIP was synthesized using a functional monomer that was selected before by computational simulation. A mag-NIP (magnetic non-imprinted polymer) control material was also prepared for comparative purposes.

View Article and Find Full Text PDF

This work addresses a novel, rapid and cost-effective approach for the electrochemical sensing of scombrotoxin (histamine) in fish based on magnetic molecularly imprinted polymer (magnetic-MIP). The histamine magnetic-MIP was synthesized by the core-shell method using histamine as a template, and 2-vinyl pyridine as functional monomer. The magnetic-MIP was characterized by TEM, SEM, and confocal microscopy.

View Article and Find Full Text PDF

The electrochemical detection of methyl parathion in fish was performed by preconcentrating the pesticide on magnetic molecularly imprinted polymer and further readout on magneto-actuated electrode by square wave voltammetry. The magnetic molecularly imprinted polymer was synthesized by a magnetic core-shell strategy, using methacrylic acid as a functional monomer, and selected by theoretical calculation using the density functional theory (DFT). The characterization of this material was performed by SEM, TEM and XRD.

View Article and Find Full Text PDF

This study addresses the rational design of a magnetic molecularly imprinted polymer (magnetic-MIP) for the selective recognition of the hormone levothyroxine. The theoretical study was carried out by the density functional theory (DFT) computations considering dispersion interaction energies, and using the D2 Grimme's correction. The B97-D/def2-SV(P)/PCM method is used not only for studying the structure of the template the and monomer-monomer interactions, but also to assess the stoichiometry, noncovalent binding energies, solvation effects and thermodynamics properties such as binding energy.

View Article and Find Full Text PDF

An alternative for determining environmental pollutants, like textile dyes, is the use of molecularly imprinted polymers (MIPs) as solid phase extraction (SPE) or as sensor recognition systems. MIPs are tailor-made artificial receptor sites in a polymer, which present good affinity and selectivity. This work shows the synthesis of MIPs for the Acid Green 16 (AG16) textile dye and the results of rebinding, selectivity and application of this MIP in water samples.

View Article and Find Full Text PDF

A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves.

View Article and Find Full Text PDF

Magnetic molecularly imprinted polymers (MMIPs) have become a research hotspot due to their two important characteristics: target recognition and magnetic separation. This paper presents the preparation, characterization, and optimization of an MMIP for the preconcentration of disperse red 73 dye (DR73) and its subsequent efficient degradation by photoelectrocatalytic treatment. The MMIPs were characterized by scanning electron microscopy (SEM), which revealed homogeneous distribution of the particles.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in clinical diagnosis are being enhanced through the use of graphene, a 2D material known for its high surface area and excellent electrical conductivity.
  • The paper provides an overview of how graphene can be incorporated with biological elements like antibodies and DNA probes to create immunosensors and genosensors for improved medical applications.
  • Key topics include various electroanalytical methods for biosensing, the potential for cancer biomarker monitoring, and the development of real-time, point-of-care diagnostic devices using graphene technology.
View Article and Find Full Text PDF

This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements.

View Article and Find Full Text PDF

With the fast growth of cancer research, new analytical methods are needed to measure anticancer drugs. This is usually accomplished by using sophisticated analytical instruments. Biosensors are attractive candidates for measuring anticancer drugs, but currently few biosensors can achieve this goal.

View Article and Find Full Text PDF