Objective: Alzheimer disease (AD) is the leading cause of dementia, and although its etiology remains unclear, it seems that type 2 diabetes mellitus (T2DM) and other prediabetic states of insulin resistance could contribute to the appearance of sporadic AD. As such, we have assessed whether tau and β-amyloid (Aβ) deposits might be present in pancreatic tissue of subjects with AD, and whether amylin, an amyloidogenic protein deposited in the pancreas of T2DM patients, might accumulate in the brain of AD patients.
Methods: We studied pancreatic and brain tissue from 48 individuals with no neuropathological alterations and from 87 subjects diagnosed with AD.
Parkinson's disease patients experience a wide range of non-motor symptoms that may be provoked by deposits of phosphorylated α-synuclein in the peripheral nervous system. Pre-existing diabetes mellitus might be a risk factor for developing Parkinson's disease, and indeed, nearly 60% of Parkinson's disease patients are insulin resistant. Thus, we have investigated whether phosphorylated α-synuclein is deposited in pancreatic tissue of subjects with synucleinopathies.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) remains the most potent neurotrophic factor for dopamine neurons. Despite its potential as treatment for Parkinson's disease (PD), its clinical application has been hampered by safety and efficacy concerns associated with GDNF's short in vivo half-life and with significant brain delivery obstacles. Drug formulation systems such as microparticles (MPs) may overcome these issues providing protein protection from degradation and sustained drug release over time.
View Article and Find Full Text PDF