Introduction: Soil fertility is a major determinant of plant-microbial interactions, thus, directly and indirectly affecting crop productivity and ecosystem functions. In this study, we analysed for the first time the effects of fertilizer addition on the cropping of purslane () with particular attention to the taxonomic and functional characteristics of their associated soil microbiota.
Methods: We tested the effects of different doses of inorganic fertilization differing in the amount of N:P:K namely IT1 (300:100:100); IT2 (300:200:100); IT3 (300:200:200); and IT4 (600:100:100) (ppm N:P:K ratio) and organic fertilization (compost tea) which reached at the end of the assay the dose of 300 ppm N.
Soil is an essential resource, and its degradation is challenging modern agriculture, while its impact is expected to increase in the near future. One of the strategies to address this issue is to incorporate new alternative crops able to tolerate arduous conditions, as well as for the use of sustainable agricultural practices in order to recover and/or improve soil health. Additionally, the increasing market for new functional/healthy natural foods promotes the search for potential alternative crop species with promising bioactive compounds content.
View Article and Find Full Text PDFWorldwide, Esca is a complex and devastating Grapevine Trunk Disease (GTD), characterized by inconstant foliar symptoms and internal wood degradation. A large range of fungal taxa have been reported as causal agents. We applied both culture-dependent and culture-independent methods (Illumina Technology and q-PCR) to investigate this concerning disease.
View Article and Find Full Text PDFWe carried out a 4-year manipulative field experiment in a semiarid shrubland in southeastern Spain to assess the impacts of experimental warming (W), rainfall reduction (RR), and their combination (W + RR) on the composition and diversity of arbuscular mycorrhizal fungal (AMF) communities in rhizosphere soil of H. syriacum and G. struthium shrubs using single-molecule real-time (SMRT) DNA sequencing.
View Article and Find Full Text PDFThe aboveground impacts of climate change receive extensive research attention, but climate change could also alter belowground processes such as the delicate balance between free-living fungal decomposers and nutrient-scavenging mycorrhizal fungi that can inhibit decomposition through a mechanism called the Gadgil effect. We investigated how climate change-induced reductions in plant survival, photosynthesis and productivity alter soil fungal community composition in a mixed arbuscular/ectomycorrhizal (AM/EM) semiarid shrubland exposed to experimental warming (W) and/or rainfall reduction (RR). We hypothesised that increased EM host plant mortality under a warmer and drier climate might decrease ectomycorrhizal fungal (EMF) abundance, thereby favouring the proliferation and activity of fungal saprotrophs.
View Article and Find Full Text PDFThe PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.
View Article and Find Full Text PDFThe application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion.
View Article and Find Full Text PDFPatterns in plant-soil biota interactions could be influenced by the spatial distribution of species due to soil conditions or by the functional traits of species. Gypsum environments usually constitute a mosaic of heterogeneous soils where gypsum and nongypsum soils are imbricated at a local scale. A case study of the interactions of plants with arbuscular mycorrhizal fungi (AMF) in gypsum environments can be illustrative of patterns in biotic interactions.
View Article and Find Full Text PDFDue to the important role of arbuscular mycorrhizal fungi (AMF) in ecosystem functioning, determination of the effect of management practices on the AMF diversity in agricultural soils is essential for the sustainability of these agro-ecosystems. The objective of this study was to compare the AMF diversity in Prunus persica roots under two types of fertilisation (inorganic, with or without manure) combined with integrated or chemical pest management in a Venezuelan agro-ecosystem. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses.
View Article and Find Full Text PDFThe effects of irrigation with treated urban wastewater (WW) on the arbuscular mycorrhizal fungi (AMF) diversity and soil microbial activities were assayed on a long-term basis in a semiarid orange-tree orchard. After 43 years, the soil irrigated with fresh water (FW) had higher AMF diversity than soils irrigated with WW. Microbial activities were significantly higher in the soils irrigated with WW than in those irrigated with FW.
View Article and Find Full Text PDFThe arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) play important roles as plant protection agents, reducing or suppressing nematode colonization. However, it has never been investigated whether the galls produced in roots by nematode infection are colonized by AMF. This study tested whether galls produced by Meloidogyne incognita infection in Prunus persica roots are colonized by AMF.
View Article and Find Full Text PDFThe positive effect of arbuscular mycorrhizal fungi inoculation on plant establishment under field conditions has been shown. However, whether this effect is related to the survival of the AMF and how the AMF inoculum affects the colonisation of plant roots by the native AMF remain uncertain. In this study, we assessed the AMF community composition in O.
View Article and Find Full Text PDFBackground: Conservation tillage promotes the accretion of soil organic matter and often leads to improved soil fertility and moisture availability. However, few studies have looked at the physiological response of crop plants to different tillage practices. It was therefore hypothesised that measuring the nutrient concentrations and stable isotope composition (δ(13)C, δ(18)O, δ(15)N) of shoots could help evaluate the physiological response of common bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C.
View Article and Find Full Text PDFIn this study, we tested whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of plant species forming vegetative cover as well as some soil parameters (amounts of phosphatase and glomalin-related soil protein, microbial biomass C and N concentrations, amount of P available, and aggregate stability) were affected by different amounts (control, 6.5 kg m(-2), 13.0 kg m(-2), 19.
View Article and Find Full Text PDFThe arbuscular mycorrhizal (AM) symbiosis has been shown to modulate the same physiological processes as the phytohormone abscisic acid (ABA) and to improve plant tolerance to water deficit. The aim of the present research was to evaluate the combined influence of AM symbiosis and exogenous ABA application on plant root hydraulic properties and on plasma-membrane intrinsic proteins (PIP) aquaporin gene expression and protein accumulation after both a drought and a recovery period. Results obtained showed that the application of exogenous ABA enhanced osmotic root hydraulic conductivity (L) in all plants, regardless of water conditions, and that AM plants showed lower L values than nonAM plants, a difference that was especially accentuated when plants were supplied with exogenous ABA.
View Article and Find Full Text PDFThe aims of the present study are to find out whether the effects of arbuscular mycorrhizal (AM) symbiosis on plant resistance to water deficit are mediated by the endogenous abscisic acid (ABA) content of the host plant and whether the exogenous ABA application modifies such effects. The ABA-deficient tomato mutant sitiens and its near-isogenic wild-type parental line were used. Plant development, physiology, and expression of plant genes expected to be modulated by AM symbiosis, drought, and ABA were studied.
View Article and Find Full Text PDF