IEEE Trans Neural Syst Rehabil Eng
July 2020
Benchmarks have long been used to verify and compare the readiness level of different technologies in many application domains. In the field of wearable robots, the lack of a recognized benchmarking methodology is one important impediment that may hamper the efficient translation of research prototypes into actual products. At the same time, an exponentially growing number of research studies are addressing the problem of quantifying the performance of robotic exoskeletons, resulting in a rich and highly heterogeneous picture of methods, variables and protocols.
View Article and Find Full Text PDFExoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort.
View Article and Find Full Text PDF