Acta Neurobiol Exp (Wars)
September 2021
Prenatal stress causes learning and spatial memory deficits in adulthood by modifying hippocampal function. The dorsal hippocampus contains serotonergic and noradrenergic neuron terminals, which are related to cognitive processes. It is currently unknown whether prenatal stress modifies serotonin (5-HT) and noradrenaline (NA) content and their release in the hippocampus during cognitive performance.
View Article and Find Full Text PDFPrenatal stress modifies the serotonergic system by altering the synthesis, metabolism, receptors and serotonin content in the hippocampus. However, it is currently unknown whether serotonin release in the ventral hippocampus of prenatally stressed rats is altered. In this study, serotonin (5-HT) and its metabolite, 5‑hydroxyindoleacetic acid (5-HIAA) levels were analysed in dialysates (in vivo) and in homogenates (in vitro) of the ventral hippocampus.
View Article and Find Full Text PDFCaloric restriction (CR) has anti-epileptic effects in different animal models, at least partially due to inhibition of the mechanistic or mammalian target of rapamycin (mTOR) signaling pathway. Adenosine monophosphate-activated protein kinase (AMPK) inhibits mTOR cascade function if energy levels are low. Since hyper-activation of mTOR participates in epilepsy, its inhibition results in beneficial anti-convulsive effects.
View Article and Find Full Text PDFCaloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling.
View Article and Find Full Text PDF