trying...
5101MCID_676f086eaf95eba5d503de66 36051539 Maria D Montoya-Flores[author] Montoya Flores, Maria D[Full Author Name] montoya flores, maria d[Author] trying2...
trying...
3605153920220907
2297-176992022Frontiers in veterinary scienceFront Vet SciImpact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay.86391086391086391010.3389/fvets.2022.863910In this study, the effects of orange essential oil (OEO) on the rumen fermentation, nutrient utilization, and methane (CH4) emissions of beef heifers fed a diet of bermudagrass (Cynodon dactylon) were examined. In addition, in vitro and in situ experiments were conducted. The in vitro experiment consisted of three treatments: control (CTL, no OEO), OEO1 (0.25% OEO), and OEO2 (0.5% OEO). The forage to concentrate ratio was 70:30 (dry matter [DM] basis) in all treatments. No changes in pH, proportions of volatile fatty acids, and the acetate:propionate ratio were observed (P > 0.05). The addition of 0.25% OEO resulted in a reduction in CH4 production (mL/g) relative to the control (P < 0.05). In the in situ experiment, 5 g of total mixed ration (CTL, OEO1, and OEO2) were incubated for 6, 12, 24, 48, and 72 h. Potential and effective degradability were not affected by OEO supplementation (P > 0.05). In the in vivo study, six crossbred beef heifers (Bos indicus × Bos taurus), fitted with rumen cannulas, were assigned to three different treatments: no additive (CTL), 0.25% OEO (OEO1), and 0.5% OEO (OEO2) in a replicated 3 × 3 Latin square (21-day periods). Heifers were fed at 2.8% body weight. In vivo CH4 production was measured in open-circuit respiration chambers. Reductions in gross energy consumption, apparent total tract digestibility, and rumen valerate concentration were observed for OEO2 compared to the control (P < 0.05). Additionally, decreases in CH4 emissions (g/day; P < 0.05) and CH4 (MJ gross energy intake/day; P < 0.05) were observed in response to supplementation of 0.5% OEO as compared to the CTL treatment. Thus, supplementation of 0.5% OEO reduced CH4 emissions (g/day) by 12% without impacting the DM intake of heifers fed bermudagrass hay as a basal ration.Copyright © 2022 Jiménez-Ocampo, Montoya-Flores, Pamanes-Carrasco, Herrera-Torres, Arango, Estarrón-Espinosa, Aguilar-Pérez, Araiza-Rosales, Guerrero-Cervantes and Ku-Vera.Jiménez-OcampoRafaelRLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico.National Institute of Research in Forestry, Agriculture and Livestock-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico.Montoya-FloresMaría DMDNational Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Queretaro, Mexico.Pamanes-CarrascoGerardoGInstitute of Silviculture and Wood Industry, National Council of Science and Technology-Durango State Juarez University, Durango, Mexico.Herrera-TorresEsperanzaENational Technology of Mexico, Technological Institute of Valle del Guadiana, Durango, Mexico.ArangoJacoboJTropical Forage Program-International Center for Tropical Agriculture (CIAT), Palmira, Colombia.Estarrón-EspinosaMirnaMFood Technology Unit, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Jalisco, Mexico.Aguilar-PérezCarlos FCFLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico.Araiza-RosalesElia EEEDepartment of Animal Nutrition, National Council of Science and Technology-Durango State Juarez University, Durango, Mexico.Guerrero-CervantesMaribelMDepartment of Small Ruminant Nutrition, Faculty of Veterinary Medicine and Animal Science, Durango State Juarez University, Durango, Mexico.Ku-VeraJuan CJCLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Yucatan, Mexico.engJournal Article20220816
SwitzerlandFront Vet Sci1016666582297-1769cattleenteric methaneessential oilfeed additiveplant secondary metabolitesThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
202212720227262022922332022936020229361202211epublish36051539PMC942468010.3389/fvets.2022.863910IPCC . Climate Change and Land. Chapter 5: Food Security. (2019). Available online at: https://www.ipcc.ch/srccl/chapter/chapter-5/ (accessed April 26, 2022).Honan M, Feng X, Tricarico JM, Kebreab E. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim Prod Sci. (2021) 10.1071/AN2029510.1071/AN20295Min B-R, Lee S, Jung H, Miller DN, Chen R. Enteric methane emissions and animal performance in dairy and beef cattle production: strategies, opportunities, and impact of reducing emissions. Animals. (2022) 12:948. 10.3390/ani1208094810.3390/ani12080948PMC903078235454195Carrazco AV, Peterson CB, Zhao Y, Pan Y, McGlone JJ, DePeters EJ, et al. . The impact of essential oil feed supplementation on enteric gas emissions and production parameters from dairy cattle. Sustainability. (2020) 12:10347. 10.3390/su12241034710.3390/su122410347McGrath J, Duval SM, Tamassia LFM, Kindermann M, Stemmler RT, de Gouvea VN, et al. . Nutritional strategies in ruminants: a lifetime approach. Res Vet Sci. (2018) 116:28–39. 10.1016/j.rvsc.2017.09.01110.1016/j.rvsc.2017.09.01128943061Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. (2004) 94:223–53. 10.1016/j.ijfoodmicro.2004.03.02210.1016/j.ijfoodmicro.2004.03.02215246235Ku-Vera JC, Castelán-Ortega OA, Galindo-Maldonado FA, Arango J, Chirinda N, Jiménez-Ocampo R, et al. . Review: strategies for enteric methane mitigation in cattle fed tropical forages. Animal. (2020) 14:s453–63. 10.1017/S175173112000178010.1017/S175173112000178032807248Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. . Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci. (2020) 7:584. 10.3389/fvets.2020.0058410.3389/fvets.2020.00584PMC748144633195495Souza KA de, Monteschio J de O, Mottin C, Ramos TR, Pinto LA de M, Eiras CE, et al. . Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedlot. Livest Sci. (2019) 220:190–5. 10.1016/j.livsci.2018.12.02610.1016/j.livsci.2018.12.026Horky P, Skalickova S, Smerkova K, Skladanka J. Essential oils as a feed additives: pharmacokinetics and potential toxicity in monogastric animals. Animals. (2019) 9:352. 10.3390/ani906035210.3390/ani9060352PMC661718631200591Kotsampasi B, Tsiplakou E, Christodoulou C, Mavrommatis A, Mitsiopoulou C, Karaiskou C, et al. . Effects of dietary orange peel essential oil supplementation on milk yield and composition, and blood and milk antioxidant status of dairy ewes. Anim Feed Sci Technol. (2018) 245:20–31. 10.1016/j.anifeedsci.2018.08.00710.1016/j.anifeedsci.2018.08.007Lin B, Lu Y, Salem AZM, Wang JH, Liang Q, Liu JX. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim Feed Sci Technol. (2013) 184:24–32. 10.1016/j.anifeedsci.2013.05.01110.1016/j.anifeedsci.2013.05.011Hassan F, Arshad MA, Ebeid HM, Rehman MS, Khan MS, Shahid S, et al. . Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Front Vet Sci. (2020) 7:575801. 10.3389/fvets.2020.57580110.3389/fvets.2020.575801PMC768852233263013Hosni K, Zahed N, Chrif R, Abid I, Medfei W, Kallel M, et al. . Composition of peel essential oils from four selected tunisian citrus species: evidence for the genotypic influence. Food Chem. (2010) 123:1098–104. 10.1016/j.foodchem.2010.05.06810.1016/j.foodchem.2010.05.068de Araújo JSF, de Souza EL, Oliveira JR, Gomes ACA, Kotzebue LRV, da Silva Agostini DL, et al. . Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. Int J Biol Macromol. (2020) 143:991–9. 10.1016/j.ijbiomac.2019.09.16010.1016/j.ijbiomac.2019.09.16031669659Kamalak A, Atalay AI, Ozkan CO, Tatliyer A. Kaya E. Effect of essential orange (Citrus sinensis L) oil on rumen microbial fermentation using in vitro gas production technique. J Anim Plant Sci. (2011) 21:764–9.Wu P, Liu ZB, He WF Yu SB, Gao G, Wang JK. Intermittent feeding of citrus essential oils as a potential strategy to decrease methane production by reducing microbial adaptation. J Clean Prod. (2018) 194:704–13. 10.1016/j.jclepro.2018.05.16710.1016/j.jclepro.2018.05.167García-Rodríguez J, Saro C, Mateos I, González JS, Carro MD, Ranilla MJ. Effects of replacing extruded maize by dried citrus pulp in a mixed diet on ruminal fermentation, methane production, and microbial populations in rusitec fermenters. Animals. (2020) 10:1316. 10.3390/ani1008131610.3390/ani10081316PMC746035932751690Ali W. Korir, Merbold, Goopy, Butterbach-Bahl, Dickhoefer, Schlecht. Supplementing tropical cattle for improved nutrient utilization and reduced enteric methane emissions. Animals. (2019) 9:210. 10.3390/ani905021010.3390/ani9050210PMC656274231052306Araiza-Ponce K, Murillo-Ortiz M, Herrera-Torres E, Valencia-Vázquez R, Carrete-Carreón F, Pamanes-Carrasco G. Leucaena leucocephala y Opuntia ficus-indica reducen la producción de metano in vitro. Abanico Vet. (2020) 10:1–13. 10.21929/abavet2020.1810.21929/abavet2020.18Musco N, Koura IB, Tudisco R, Awadjihè G, Adjolohoun S, Cutrignelli MI, et al. . Nutritional characteristics of Forage Grown in South of Benin. Asian-Australas J Anim Sci. (2015) 29:51–61. 10.5713/ajas.15.020010.5713/ajas.15.0200PMC469868926732328Schofield P, Pitt RE, Pell AN. Kinetics of fiber digestion from in vitro gas production. J Anim Sci. (1994) 72:2980–91. 10.2527/1994.72112980x10.2527/1994.72112980x7730194González-Arreola A, Murillo-Ortíz M, Pámanes-Carrasco G, Reveles-Saucedo FO, Herrera-Torres E. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. J Anim Plant Sci. (2019) 40:6544–53.Ørskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. (1979) 92:499–503. 10.1017/S002185960006304810.1017/S0021859600063048National Academies of Sciences E and Medicine . Nutrient Requirements of Beef Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press; (2016)38386771Arceo-Castillo JI, Montoya-Flores MD, Molina-Botero IC, Piñeiro-Vázquez AT, Aguilar-Pérez CF, Ayala-Burgos AJ, et al. . Effect of the volume of methane released into respiration chambers on full system methane recovery. Anim Feed Sci Technol. (2019) 249:54–61. 10.1016/j.anifeedsci.2019.02.00110.1016/j.anifeedsci.2019.02.001IPCC . IPCC Guidelines for National Greenhouse Gas Inventories. (2006). Available online at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (accessed April 15, 2019).Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. (1991) 74:3583–97. 10.3168/jds.S0022-0302(91)78551-210.3168/jds.S0022-0302(91)78551-21660498SAS Institute. SAS/STAT Software. Cary, NC: United States; (2006).Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, et al. . Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol Technol. (2008) 49:386–96. 10.1016/j.postharvbio.2008.01.01610.1016/j.postharvbio.2008.01.016Moufida S, Marzouk B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry. (2003) 62:1283–9. 10.1016/S0031-9422(02)00631-310.1016/S0031-9422(02)00631-312648552Pino J, Sánchez M, Sánchez R, Roncal E. Chemical composition of orange oil concentrates. Nahrung. (1992) 36:539–42. 10.1002/food.1992036060410.1002/food.19920360604González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile compounds in citrus essential oils: a comprehensive review. Front Plant Sci. (2019) 10:12. 10.3389/fpls.2019.0001210.3389/fpls.2019.00012PMC637070930804951Ruiz B, Flotats X. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. (2014) 34:2063–79. 10.1016/j.wasman.2014.06.02610.1016/j.wasman.2014.06.02625081855Castillejos L, Calsamiglia S, Ferret A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci. (2006) 89:2649–58. 10.3168/jds.S0022-0302(06)72341-410.3168/jds.S0022-0302(06)72341-416772584Castillejos L, Calsamiglia S, Martín-Tereso J, Ter Wijlen H. In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Anim Feed Sci Technol. (2008) 145:259–70. 10.1016/j.anifeedsci.2007.05.03710.1016/j.anifeedsci.2007.05.037Thao NT, Wanapat M, Kang S, Cherdthong A. Effects of Supplementation of Eucalyptus E. Camaldulensis leaf meal on feed intake and rumen fermentation efficiency in Swamp Buffaloes Asian-Australas. J Anim Sci. (2015) 28:951–7. 10.5713/ajas.14.087810.5713/ajas.14.0878PMC447850426104399Thao NT, Wanapat M, Cherdthong A, Kang S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in Swamp Buffaloes. Asian-Australas J Anim Sci. (2014) 27:46–54. 10.5713/ajas.2013.1330110.5713/ajas.2013.13301PMC409329025049925Nanon A, Suksombat W, Yang WZ. Effects of essential oils supplementation on in vitro and in situ feed digestion in beef cattle. Anim Feed Sci Technol. (2014) 196:50–9. 10.1016/j.anifeedsci.2014.07.00610.1016/j.anifeedsci.2014.07.006Cobellis G, Acuti G, Forte C, Menghini L, De Vincenzi S, Orrù M, et al. . Use of Rosmarinus officinalis in sheep diet formulations: Effects on ruminal fermentation, microbial numbers and in situ degradability. Small Rumin Res. (2015) 126:10–8. 10.1016/j.smallrumres.2015.01.01810.1016/j.smallrumres.2015.01.018Afzalani, Zein M, Jamarun N, Musnandar E. Effect of increasing doses of essential oil extracted from berastagi orange (Citrus sinensis L.) peels on performance, rumen fermentation and blood metabolites in fattening Bali Cattle. Pak J Nutr. (2015) 14:480–86. 10.3923/pjn.2015.480.48610.3923/pjn.2015.480.486Ying Y, Niu M, Clarke AR, Harvatine KJ. Short communication: effect of a citrus extract in lactating dairy cows. J Dairy Sci. (2017) 100:5468–71. 10.3168/jds.2016-1223310.3168/jds.2016-1223328527798Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yáñez-Ruiz DR, et al. . Meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals. (2020) 10:620. 10.3390/ani1004062010.3390/ani10040620PMC722280732260263Oh J, Harper M, Hristov AN. Effects of lowering crude protein supply alone or in a combination with essential oils on productivity, rumen function and nutrient utilization in dairy cows. Animal. (2019) 13:2510–8. 10.1017/S175173111900108310.1017/S175173111900108331097050Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. . review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol. (2008) 145:209–28. 10.1016/j.anifeedsci.2007.04.01410.1016/j.anifeedsci.2007.04.0140Cardozo PW, Calsamiglia S, Ferret A, Kamel C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet1. J Anim Sci. (2006) 84:2801–8. 10.2527/jas.2005-59310.2527/jas.2005-59316971582Hundal J, Wadhwa M, Bakshi M. Effect of supplementing essential oils on the in vitro methane production and digestibility of wheat straw. J Anim Res Nutr. (2016) 01:014. 10.21767/2572-5459.10001410.21767/2572-5459.100014Rofiq MN, Negara W, Martono S, Gopar RA, Boga M. Potential effect of some essential oils on rumen methane reduction and digestibility by in vitro incubation technique. IOP Conf Ser: Earth Environ Sci. (2021) 905:012138. 10.1088/1755-1315/905/1/01213810.1088/1755-1315/905/1/012138Hassan F, Arshad MA Li M, Rehman MS, Loor JJ, Huang J. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects. Animals. (2020) 10:2076. 10.3390/ani1011207610.3390/ani10112076PMC769531833182363Samii SS, Wallace N, Nagaraja TG, Engstrom MA, Miesner MD, Armendariz CK, et al. . Effects of limonene on ruminal Fusobacterium necrophorum concentrations, fermentation, and lysine degradation in cattle. J Anim Sci. (2016) 94:3420–30. 10.2527/jas.2016-045510.2527/jas.2016-045527695807Spanghero M, Zanfi C, Fabbro E, Scicutella N, Camellini C. Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Anim Feed Sci Technol. (2008) 145:364–74. 10.1016/j.anifeedsci.2007.05.04810.1016/j.anifeedsci.2007.05.048Van Soest PJ. Nutritional Ecology of the Ruminant. (2018). Available online at: 10.7591/9781501732355 (accessed February 20, 2020).10.7591/9781501732355Benchaar C, Petit HV, Berthiaume R, Ouellet DR, Chiquette J, Chouinard PY. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J Dairy Sci. (2007) 90:886–97. 10.3168/jds.S0022-0302(07)71572-210.3168/jds.S0022-0302(07)71572-217235165Direkvandi E, Mohammadabadi T, Salem AZM. Influence of three microbial feed additives of Megasphaera elsdenii, Saccharomyces cerevisiae and Lactobacillus sp. on ruminal methane and carbon dioxide production, and biofermentation kinetics. J Appl Microbiol. (2021) 131:623–33. 10.1111/jam.1499010.1111/jam.1499033411960Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: a review. Sci Total Environ. (2016) 545:556–68. 10.1016/j.scitotenv.2015.12.10310.1016/j.scitotenv.2015.12.10326760275Cobellis G, Trabalza-Marinucci M, Marcotullio MC Yu Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol. (2016) 215:25–36. 10.1016/j.anifeedsci.2016.02.00810.1016/j.anifeedsci.2016.02.008Rezzadori K, Benedetti S, Amante ER. Proposals for the residues recovery: orange waste as raw material for new products. Food Bioprod Process. (2012) 90:606–14. 10.1016/j.fbp.2012.06.00210.1016/j.fbp.2012.06.002Rivaroli DC, del Mar Campo M, Sañudo C, Guerrero A, Jorge AM, Vital ACP, et al. . Effect of an essential oils blend on meat characteristics of crossbred heifers finished on a high-grain diet in a feedlot. Anim Prod Sci. (2020) 60:595. 10.1071/AN1862010.1071/AN18620Rivaroli DC, Guerrero A, Velandia Valero M, Zawadzki F, Eiras CE, Campo M., del M, et al. . Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots. Meat Sci. (2016) 121:278–84. 10.1016/j.meatsci.2016.06.01710.1016/j.meatsci.2016.06.01727388818Macome FM, Pellikaan WF., Schonewille JTh, Bannink A, van Laar H, Hendriks WH, et al. . iIn vitro rumen gas and methane production of grass silages differing in plant maturity and nitrogen fertilisation, compared to in vivo enteric methane production. Anim Feed Sci Technol. (2017) 230:96–102. 10.1016/j.anifeedsci.2017.04.00510.1016/j.anifeedsci.2017.04.005Yáñez-Ruiz DR, Bannink A, Dijkstra J, Kebreab E, Morgavi DP, O'Kiely P, et al. . Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim Feed Sci Technol. (2016) 216:1–18. 10.1016/j.anifeedsci.2016.03.01610.1016/j.anifeedsci.2016.03.016Babushok VI, Linstrom PJ, Zenkevich IG. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data. (2011) 40:043101. 10.1063/1.365355210.1063/1.36535520Linstrom PJ, Mallard WG. The NIST chemistry WebBook: a chemical data resource on the internet. J Chem Eng Data. (2001) 46:1059–63. 10.1021/je000236i10.1021/je000236i
3407160820210627
2076-26151162021May28Animals : an open access journal from MDPIAnimals (Basel)Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass.159910.3390/ani11061599In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p < 0.001). In a dry matter rumen degradability study for 96 h, there were no differences in potential and effective degradability. In the in vivo study, six crossbred heifers fitted with rumen cannulas were assigned to a 6 × 6 Latin square design according to the following treatments: control (CTL), no additive; chitosan (CHI1, 1.5 g/kg DMI); (CHI2, 3.0 g/kg DMI); naringin (NA1, 1.5 g/kg DMI); (NA2, 3.0 g/kg DMI) and a mixture of CHI and NA (1.5 + 1.5 g/kg DMI) given directly through the rumen cannula. Additives did not affect rumen fermentation (p > 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass.Jiménez-OcampoRafaelR0000-0003-2171-1357Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Experimental Field Valle del Guadiana, Durango C.P. 34170, Mexico.Montoya-FloresMaría DenisseMDNational Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Crops, and Livestock Research-Ministry of Agriculture and Rural Development, Ajuchitlan C.P. 76280, Mexico.Herrera-TorresEsperanzaENational Technologic of Mexico, Technological Institute of Valle del Guadiana, Durango C.P. 34371, Mexico.Pámanes-CarrascoGerardoGInstitute of Silviculture and Wood Industry, National Council of Science and Technology-Durango State Juarez University, Durango CP 34126, Mexico.Arceo-CastilloJeyder IsraelJIFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.Valencia-SalazarSara StephanieSS0000-0003-0640-608XCollege of the Southern Border (ECOSUR), Livestock and Environment, San Cristobal de las Casas C.P. 29290, Mexico.ArangoJacoboJInternational Center for Tropical Agriculture (CIAT), Palmira C.P. 763537, Colombia.Aguilar-PérezCarlos FernandoCFFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.Ramírez-AvilésLuisL0000-0003-3340-8558Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.Solorio-SánchezFrancisco JavierFJ0000-0002-1384-8639Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.Piñeiro-VázquezÁngel TrinidadÁTNational Technologic of Mexico, Technological Institute of Conkal, Conkal C.P. 97345, Mexico.Ku-VeraJuan CarlosJCFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida C.P. 97100, Mexico.engaConsortium of International Agricultural Research CentersaClimate Change Agriculture and Food SecurityRound 4Climate Food and Farming Global Research Alliance ScholarshipsJournal Article20210528
SwitzerlandAnimals (Basel)1016356142076-2615additiveantimicrobial actionchitinflavonoidgreenhouse gasesThe authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
20213302021513202152120216213220216360202163612021528epublish34071608PMC822673810.3390/ani11061599ani11061599Gerber P.J., Mottet A., Opio C.I., Falcucci A., Teillard F. Environmental Impacts of Beef Production: Review of Challenges and Perspectives for Durability. Meat Sci. 2015;109:2–12. doi: 10.1016/j.meatsci.2015.05.013.10.1016/j.meatsci.2015.05.01326117397Morgavi D.P., Forano E., Martin C., Newbold C.J. Microbial Ecosystem and Methanogenesis in Ruminants. Animal. 2010;4:1024–1036. doi: 10.1017/S1751731110000546.10.1017/S175173111000054622444607Belanche A., Pinloche E., Preskett D., Newbold C.J. Effects and Mode of Action of Chitosan and Ivy Fruit Saponins on the Microbiome, Fermentation and Methanogenesis in the Rumen Simulation Technique. FEMS Microbiol. Ecol. 2016:1–13. doi: 10.1093/femsec/fiv160.10.1093/femsec/fiv160PMC583184826676056Beauchemin K.A., Ungerfeld E.M., Eckard R.J., Wang M. Review: Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal. 2020;14:s2–s16. doi: 10.1017/S1751731119003100.10.1017/S175173111900310032024560Jafari S., Ebrahimi M., Goh Y.M., Rajion M.A., Jahromi M.F., Al-Jumaili W.S. Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil)—A Review of Ten-Year Studies. Ann. Anim. Sci. 2019;19:3–29. doi: 10.2478/aoas-2018-0037.10.2478/aoas-2018-0037Johnson K.A., Johnson D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995;73:2483–2492. doi: 10.2527/1995.7382483x.10.2527/1995.7382483x8567486Bhatta R., Saravanan M., Baruah L., Sampath K.T. Nutrient Content, in Vitro Ruminal Fermentation Characteristics and Methane Reduction Potential of Tropical Tannin-Containing Leaves. J. Sci. Food Agric. 2012;92:2929–2935. doi: 10.1002/jsfa.5703.10.1002/jsfa.570322522493Hill J., McSweeney C., Wright A.-D.G., Bishop-Hurley G., Kalantar-zadeh K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016;34:26–35. doi: 10.1016/j.tibtech.2015.10.004.10.1016/j.tibtech.2015.10.00426603286Chatterjee P.N., Kamra D.N., Agarwal N., Patra A. Influence of Supplementation of Tropical Plant Feed Additives on in Vitro Rumen Fermentation and Methanogenesis. Anim. Prod. Sci. 2014;54:1770–1774. doi: 10.1071/AN14366.10.1071/AN14366Khameneh B., Iranshahy M., Soheili V., Fazly Bazzaz B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control. 2019;8:1–28. doi: 10.1186/s13756-019-0559-6.10.1186/s13756-019-0559-6PMC663605931346459Divya K., Vijayan S., George T.K., Jisha M.S. Antimicrobial Properties of Chitosan Nanoparticles: Mode of Action and Factors Affecting Activity. Fibers Polym. 2017;18:221–230. doi: 10.1007/s12221-017-6690-1.10.1007/s12221-017-6690-1Duffy C., O’Riordan D., O’Sullivan M., Jacquier J.-C. In Vitro Evaluation of Chitosan Copper Chelate Gels as a Multimicronutrient Feed Additive for Cattle. J. Sci. Food Agric. 2018;98:4177–4183. doi: 10.1002/jsfa.8939.10.1002/jsfa.893929418003Henry D.D., Ruiz-Moreno M., Ciriaco F.M., Kohmann M., Mercadante V.R.G., Lamb G.C., DiLorenzo N. Effects of Chitosan on Nutrient Digestibility, Methane Emissions, and in Vitro Fermentation in Beef Cattle. J. Anim. Sci. 2015;93:3539–3550. doi: 10.2527/jas.2014-8844.10.2527/jas.2014-884426440023Dias A.O.C., Goes R.H.T.B., Gandra J.R., Takiya C.S., Branco A.F., Jacaúna A.G., Oliveira R.T., Souza C.J.S., Vaz M.S.M. Increasing Doses of Chitosan to Grazing Beef Steers: Nutrient Intake and Digestibility, Ruminal Fermentation, and Nitrogen Utilization. Anim. Feed Sci. Technol. 2017;225:73–80. doi: 10.1016/j.anifeedsci.2017.01.015.10.1016/j.anifeedsci.2017.01.015Raafat D., Sahl H.-G. Chitosan and Its Antimicrobial Potential—A Critical Literature Survey. Microb. Biotechnol. 2009;2:186–201. doi: 10.1111/j.1751-7915.2008.00080.x.10.1111/j.1751-7915.2008.00080.xPMC381583921261913Araújo A.P.C., Venturelli B.C., Santos M.C.B., Gardinal R., Cônsolo N.R.B., Calomeni G.D., Freitas J.E., Barletta R.V., Gandra J.R., Paiva P.G., et al. Chitosan Affects Total Nutrient Digestion and Ruminal Fermentation in Nellore Steers. Anim. Feed Sci. Technol. 2015;206:114–118. doi: 10.1016/j.anifeedsci.2015.05.016.10.1016/j.anifeedsci.2015.05.016Gandra J.R., Takiya C.S., De Oliveira E.R., Paiva P.G., Goes R.H.T.B., Gandra E.R.S., Araki H.M.C. Nutrient Digestion, Microbial Protein Synthesis, and Blood Metabolites of Jersey Heifers Fed Chitosan and Whole Raw Soybeans. R. Bras De Zootec. 2016;45:130–137. doi: 10.1590/S1806-92902016000300007.10.1590/S1806-92902016000300007Alam M.A., Subhan N., Rahman M.M., Uddin S.J., Reza H.M., Sarker S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014;5:404–417. doi: 10.3945/an.113.005603.10.3945/an.113.005603PMC408518925022990Lopez-Campos O., Bodas R., Prieto N., Giraldez F.J., Perez V., Andres S. Naringin Dietary Supplementation at 0.15% Rates Does Not Provide Protection against Sub-Clinical Acidosis and Does Not Affect the Responses of Fattening Lambs to Road Transportation. Animal. 2010;4:958–964. doi: 10.1017/S1751731110000145.10.1017/S175173111000014522444269Karim N., Jia Z., Zheng X., Cui S., Chen W. A Recent Review of Citrus Flavanone Naringenin on Metabolic Diseases and Its Potential Sources for High Yield-Production. Trends Food Sci. Technol. 2018;79:35–54. doi: 10.1016/j.tifs.2018.06.012.10.1016/j.tifs.2018.06.012Cushnie T.P.T., Lamb A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014.10.1016/j.ijantimicag.2011.02.01421514796Oskoueian E., Abdullah N., Oskoueian A. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. Biomed. Res. Int. 2013;2013:1–8. doi: 10.1155/2013/349129.10.1155/2013/349129PMC379451624175289Araiza-Ponce K., Murillo-Ortiz M., Herrera-Torres E., Valencia-Vázquez R., Carrete-Carreón F., Pamanes-Carrasco G. Leucaena leucocephala y Opuntia ficus-indica reducen la producción de metano in vitro. Abanico Vet. 2020;10:1–13. doi: 10.21929/abavet2020.18.10.21929/abavet2020.18Patra A.K., Yu Z. Combinations of Nitrate, Saponin, and Sulfate Additively Reduce Methane Production by Rumen Cultures in Vitro While Not Adversely Affecting Feed Digestion, Fermentation or Microbial Communities. Bioresour. Technol. 2014;155:129–135. doi: 10.1016/j.biortech.2013.12.099.10.1016/j.biortech.2013.12.09924440491ANKOM Technology . ANKOM RF Gas Production System Operator’s Manual. ANKOM Technology; Macedon, NY, USA: 2008.Schofield P., Pitt R.E., Pell A.N. Kinetics of Fiber Digestion from in Vitro Gas Production. J. Anim. Sci. 1994;72:2980–2991. doi: 10.2527/1994.72112980x.10.2527/1994.72112980x7730194González-Arreola A., Murillo-Ortíz M., Pámanes-Carrasco G., Reveles-Saucedo F.O., Herrera-Torres E. Nutritive Quality and Gas Production of Corn Silage with the Addition of Fresh and Fermented Prickly Pear Cladodes. J. Anim. Plant Sci. 2019;40:6544–6553.SAS Institute . SAS Statistical Analysis System for Windows. SAS Institute Inc.; Cary, NC, USA: 2006. Version 9.0.National Academies of Sciences, Engineering and Medicine . Nutrient Requirements of Beef Cattle. 8th ed. The National Academies Press; Washington, DC, USA: 2016.Schneider B., Flat W. The Evaluation of Feeds through Digestibility Experiments. The University of Georgia; Athens, GA, USA: 1975.Ørskov E.R., McDonald I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979;92:499–503. doi: 10.1017/S0021859600063048.10.1017/S0021859600063048Ryan J.P. Determination of Volatile Fatty Acids and Some Related Compounds in Ovine Rumen Fluid, Urine, and Blood Plasma, by Gas-Liquid Chromatography. Anal. Biochem. 1980;108:374–384. doi: 10.1016/0003-2697(80)90602-8.10.1016/0003-2697(80)90602-87457884Canul-Solís J.R., Piñeiro-Vázquez A.T., Arceo-Castillo J.I., Alayón-Gamboa J.A., Ayala-Burgos A.J., Aguilar-Pérez C.F., Solorio-Sánchez F.J., Castelán-Ortega O.A., Lachica-López M., Quintana-Owen P., et al. Design and Construction of Low-Cost Respiration Chambers for Ruminal Methane Measurements in Ruminants. Rev. Mex. De Cienc. Pecu. 2017;8:185–191. doi: 10.22319/rmcp.v8i2.4442.10.22319/rmcp.v8i2.4442Valencia Salazar S.S., Piñeiro Vázquez A.T., Molina Botero I.C., Lazos Balbuena F.J., Uuh Narváez J.J., Segura Campos M.R., Ramírez Avilés L., Solorio Sánchez F.J., Ku Vera J.C. Potential of Samanea Saman Pod Meal for Enteric Methane Mitigation in Crossbred Heifers Fed Low-Quality Tropical Grass. Agric. Meteorol. 2018;258:108–116. doi: 10.1016/j.agrformet.2017.12.262.10.1016/j.agrformet.2017.12.262Intergovernmental Panel on Climate Change (IPCC) IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Changes; Geneva, Switzerland: 2006. [(accessed on 3 March 2021)]. p. 26. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.pdf.Van Soest P.J., Robertson J.B., Lewis B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991;74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2.10.3168/jds.S0022-0302(91)78551-21660498Kim E.T., Guan L.L., Lee S.J., Lee S.M., Lee S.S., Lee I.D., Lee S.K., Lee S.S. Effects of Flavonoid-Rich Plant Extracts on In Vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian Australas. J. Anim. Sci. 2015;28:530–537. doi: 10.5713/ajas.14.0692.10.5713/ajas.14.0692PMC434110225656200Tong J., Zhang H., Wang J., Liu Y., Mao S., Xiong B., Jiang L. Effects of Different Molecular Weights of Chitosan on Methane Production and Bacterial Community Structure in Vitro. J. Integr. Agric. 2020;19:1644–1655. doi: 10.1016/S2095-3119(20)63174-4.10.1016/S2095-3119(20)63174-4Belanche A., Ramos-Morales E., Newbold C.J. In Vitro Screening of Natural Feed Additives from Crustaceans, Diatoms, Seaweeds and Plant Extracts to Manipulate Rumen Fermentation: Alternative Feed Additives to Manipulate Rumen Function. J. Sci. Food Agric. 2016;96:3069–3078. doi: 10.1002/jsfa.7481.10.1002/jsfa.748126441121Haryati R.P., Jayanegara A., Laconi E.B., Ridla M., Suptijah P. Evaluation of Chitin and Chitosan from Insect as Feed Additives to Mitigate Ruminal Methane Emission; Proceedings of the International Conference on Biology and Applied Science (ICOBAS); Malang, Indonesia. 13–14 March 2019; College Park, MD, USA: AIP Publishing; 2019. p. 040008.Olagaray K.E., Bradford B.J. Plant Flavonoids to Improve Productivity of Ruminants—A Review. Anim. Feed Sci. Technol. 2019;251:21–36. doi: 10.1016/j.anifeedsci.2019.02.004.10.1016/j.anifeedsci.2019.02.004Beuvink J.M.W., Spoelstra S.F. Interactions between Substrate, Fermentation End-Products, Buffering Systems and Gas Production upon Fermentation of Different Carbohydrates by Mixed Rumen Microorganisms in Vitro. Appl. Microbiol. Biotechnol. 1992;37:505–509. doi: 10.1007/BF00180978.10.1007/BF00180978Harahap R.P., Setiawan D., Nahrowi N., Suharti S., Obitsu T., Jayanegara A. Enteric Methane Emissions and Rumen Fermentation Profile Treated by Dietary Chitosan: A Meta-Analysis of In Vitro Experiments. Trop. Anim. Sci. J. 2020;43:233–239. doi: 10.5398/tasj.2020.43.3.233.10.5398/tasj.2020.43.3.233Chagas J.C., Ramin M., Krizsan S.J. In Vitro Evaluation of Different Dietary Methane Mitigation Strategies. Animals. 2019;9:1120. doi: 10.3390/ani9121120.10.3390/ani9121120PMC694087031835803Mingoti R.D., Freitas J.E., Gandra J.R., Gardinal R., Calomeni G.D., Barletta R.V., Vendramini T.H.A., Paiva P.G., Rennó F.P. Dose Response of Chitosan on Nutrient Digestibility, Blood Metabolites and Lactation Performance in Holstein Dairy Cows. Livest. Sci. 2016;187:35–39. doi: 10.1016/j.livsci.2016.02.008.10.1016/j.livsci.2016.02.008Vendramini T.H.A., Takiya C.S., Silva T.H., Zanferari F., Rentas M.F., Bertoni J.C., Consentini C.E.C., Gardinal R., Acedo T.S., Rennó F.P. Effects of a Blend of Essential Oils, Chitosan or Monensin on Nutrient Intake and Digestibility of Lactating Dairy Cows. Anim. Feed Sci. Technol. 2016;214:12–21. doi: 10.1016/j.anifeedsci.2016.01.015.10.1016/j.anifeedsci.2016.01.015Kirwan S.F., Pierce K.M., Serra E., McDonald M., Rajauria G., Boland T.M. Effect of Chitosan Inclusion and Dietary Crude Protein Level on Nutrient Intake and Digestibility, Ruminal Fermentation, and N Excretion in Beef Heifers Offered a Grass Silage Based Diet. Animals. 2021;11:771. doi: 10.3390/ani11030771.10.3390/ani11030771PMC800117033802113Wencelová M., Váradyová Z., Mihaliková K., Kišidayová S., Jalč D. Evaluating the Effects of Chitosan, Plant Oils, and Different Diets on Rumen Metabolism and Protozoan Population in Sheep. Turk. J. Vet. Anim. Sci. 2014;38:26–33. doi: 10.3906/vet-1307-19.10.3906/vet-1307-19Patra A., Park T., Kim M., Yu Z. Rumen Methanogens and Mitigation of Methane Emission by Anti-Methanogenic Compounds and Substances. J. Anim. Sci. Biotechnol. 2017;8:13. doi: 10.1186/s40104-017-0145-9.10.1186/s40104-017-0145-9PMC527037128149512Fadel El-Seed A.N.M.A., Kamel H.E.M., Sekine J., Hishinuma M., Hamana K. Chitin and Chitosan as Possible Novel Nitrogen Sources for Ruminants. Can. J. Anim. Sci. 2003;83:161–163. doi: 10.4141/A02-063.10.4141/A02-063Goiri I., Oregui L.M., Garcia-Rodriguez A. Use of Chitosans to Modulate Ruminal Fermentation of a 50:50 Forage-to-Concentrate Diet in Sheep. J. Anim. Sci. 2010;88:749–755. doi: 10.2527/jas.2009-2377.10.2527/jas.2009-237719854994McGuffey R.K., Richardson L.F., Wilkinson J.I.D. Ionophores for Dairy Cattle: Current Status and Future Outlook. J. Dairy Sci. 2001;84:E194–E203. doi: 10.3168/jds.S0022-0302(01)70218-4.10.3168/jds.S0022-0302(01)70218-4Zanferari F., Vendramini T.H.A., Rentas M.F., Gardinal R., Calomeni G.D., Mesquita L.G., Takiya C.S., Rennó F.P. Effects of Chitosan and Whole Raw Soybeans on Ruminal Fermentation and Bacterial Populations, and Milk Fatty Acid Profile in Dairy Cows. J. Dairy Sci. 2018;101:10939–10952. doi: 10.3168/jds.2018-14675.10.3168/jds.2018-1467530243627Del Valle T., de Paiva P.G., de Jesus E.F., de Almeida G.F., Zanferari F., Costa A.G., Bueno I., Rennó F.P. Dietary Chitosan Improves Nitrogen Use and Feed Conversion in Diets for Mid-Lactation Dairy Cows. Livest. Sci. 2017;201:22–29. doi: 10.1016/j.livsci.2017.04.003.10.1016/j.livsci.2017.04.003De Paiva P.G., De Jesus E.F., Del Valle T., De Almeida G.F., Costa A.G.B.V.B., Consentini C.E.C., Zanferari F., Takiya C.S., Bueno I., Rennó F.P. Effects of Chitosan on Ruminal Fermentation, Nutrient Digestibility, and Milk Yield and Composition of Dairy Cows. Anim. Prod. Sci. 2017;57:301–307. doi: 10.1071/AN15329.10.1071/AN15329Dias L.S.B., Silva D.S., Carvalho G.G.P., Araújo M.L.G.M.L., Silva F.F.D., Pereira M.L.A., Gandra J.R., Lima V.G.O., Santos A.C.S.D., Bulcão L.F.A., et al. Chitosan Associated with Whole Raw Soybean in Diets for Murrah Buffaloes on Ruminal Fermentation, Apparent Digestibility and Nutrients Metabolism. Anim. Sci. J. 2020;91:1–16. doi: 10.1111/asj.13435.10.1111/asj.1343532869472Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010;144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012.10.1016/j.ijfoodmicro.2010.09.01220951455Jiménez-Ocampo R., Valencia-Salazar S., Pinzón-Díaz C.E., Herrera-Torres E., Aguilar-Pérez C.F., Arango J., Ku-Vera J.C. The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants. Animals. 2019;9:942. doi: 10.3390/ani9110942.10.3390/ani9110942PMC691246431717570Moate P.J., Williams S.R.O., Deighton M.H., Hannah M.C., Ribaux B.E., Morris G.L., Jacobs J.L., Hill J., Wales W.J. Effects of Feeding Wheat or Corn and of Rumen Fistulation on Milk Production and Methane Emissions of Dairy Cows. Anim. Prod. Sci. 2019;59:891–905. doi: 10.1071/AN17433.10.1071/AN17433Beauchemin K.A., McGinn S.M. Enteric Methane Emissions from Growing Beef Cattle as Affected by Diet and Level of Intake. Can. J. Anim. Sci. 2006;86:401–408. doi: 10.4141/A06-021.10.4141/A06-021Berger L.M., Blank R., Zorn F., Wein S., Metges C.C., Wolffram S. Ruminal Degradation of Quercetin and Its Influence on Fermentation in Ruminants. J. Dairy Sci. 2015;98:5688–5698. doi: 10.3168/jds.2015-9633.10.3168/jds.2015-963326094220Balcells J., Aris A., Serrano A., Seradj A.R., Crespo J., Devant M. Effects of an Extract of Plant Flavonoids (Bioflavex) on Rumen Fermentation and Performance in Heifers Fed High-Concentrate Diets 1. J. Anim. Sci. 2012;90:4975–4984. doi: 10.2527/jas.2011-4955.10.2527/jas.2011-495522829622Seradj A.R., Abecia L., Crespo J., Villalba D., Fondevila M., Balcells J. The Effect of Bioflavex® and Its Pure Flavonoid Components on in Vitro Fermentation Parameters and Methane Production in Rumen Fluid from Steers given High Concentrate Diets. Anim. Feed Sci. Technol. 2014;197:85–91. doi: 10.1016/j.anifeedsci.2014.08.013.10.1016/j.anifeedsci.2014.08.013Wang W., Xue C., Mao X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020;164:4532–4546. doi: 10.1016/j.ijbiomac.2020.09.042.10.1016/j.ijbiomac.2020.09.04232941908Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses J.A., Anandharamakrishnan C. A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl. 2021;2:100036. doi: 10.1016/j.carpta.2021.100036.10.1016/j.carpta.2021.100036Seradj A.R., Gimeno A., Fondevila M., Crespo J., Armengol R., Balcells J. Effects of the Citrus Flavonoid Extract Bioflavex or Its Pure Components on Rumen Fermentation of Intensively Reared Beef Steers. Anim. Prod. Sci. 2018;58:553–560. doi: 10.1071/AN15146.10.1071/AN15146Stoldt A.-K., Derno M., Das G., Weitzel J.M., Wolffram S., Metges C.C. Effects of Rutin and Buckwheat Seeds on Energy Metabolism and Methane Production in Dairy Cows. J. Dairy Sci. 2016;99:2161–2168. doi: 10.3168/jds.2015-10143.10.3168/jds.2015-1014326805964Getachew G., Robinson P.H., DePeters E.J., Taylor S.J., Gisi D.D., Higginbotham G.E., Riordan T.J. Methane Production from Commercial Dairy Rations Estimated Using an in Vitro Gas Technique. Anim. Feed Sci. Technol. 2005;123–124:391–402. doi: 10.1016/j.anifeedsci.2005.04.056.10.1016/j.anifeedsci.2005.04.056Amanzougarene Z., Fondevila M. Fitting of the In Vitro Gas Production Technique to the Study of High Concentrate Diets. Animals. 2020;10:1935. doi: 10.3390/ani10101935.10.3390/ani10101935PMC759004033096765Yáñez-Ruiz D.R., Bannink A., Dijkstra J., Kebreab E., Morgavi D.P., O’Kiely P., Reynolds C.K., Schwarm A., Shingfield K.J., Yu Z., et al. Design, Implementation and Interpretation of in Vitro Batch Culture Experiments to Assess Enteric Methane Mitigation in Ruminants—A Review. Anim. Feed Sci. Technol. 2016;216:1–18. doi: 10.1016/j.anifeedsci.2016.03.016.10.1016/j.anifeedsci.2016.03.016Macome F.M., Pellikaan W.F., Schonewille J.T., Bannink A., van Laar H., Hendriks W.H., Warner D., Cone J.W. In Vitro Rumen Gas and Methane Production of Grass Silages Differing in Plant Maturity and Nitrogen Fertilisation, Compared to in Vivo Enteric Methane Production. Anim. Feed Sci. Technol. 2017;230:96–102. doi: 10.1016/j.anifeedsci.2017.04.005.10.1016/j.anifeedsci.2017.04.005
3319549520201117
2297-176972020Frontiers in veterinary scienceFront Vet SciRole of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants.58458458410.3389/fvets.2020.00584The rumen microbiome plays a fundamental role in all ruminant species, it is involved in health, nutrient utilization, detoxification, and methane emissions. Methane is a greenhouse gas which is eructated in large volumes by ruminants grazing extensive grasslands in the tropical regions of the world. Enteric methane is the largest contributor to the emissions of greenhouse gases originating from animal agriculture. A large variety of plants containing secondary metabolites [essential oils (terpenoids), tannins, saponins, and flavonoids] have been evaluated as cattle feedstuffs and changes in volatile fatty acid proportions and methane synthesis in the rumen have been assessed. Alterations to the rumen microbiome may lead to changes in diversity, composition, and structure of the methanogen community. Legumes containing condensed tannins such as Leucaena leucocephala have shown a good methane mitigating effect when fed at levels of up to 30-35% of ration dry matter in cattle as a result of the effect of condensed tannins on rumen bacteria and methanogens. It has been shown that saponins disrupt the membrane of rumen protozoa, thus decreasing the numbers of both protozoa and methanogenic archaea. Trials carried out with cattle housed in respiration chambers have demonstrated the enteric methane mitigation effect in cattle and sheep of tropical legumes such as Enterolobium cyclocarpum and Samanea saman which contain saponins. Essential oils are volatile constituents of terpenoid or non-terpenoid origin which impair energy metabolism of archaea and have shown reductions of up to 26% in enteric methane emissions in ruminants. There is emerging evidence showing the potential of flavonoids as methane mitigating compounds, but more work is required in vivo to confirm preliminary findings. From the information hereby presented, it is clear that plant secondary metabolites can be a rational approach to modulate the rumen microbiome and modify its function, some species of rumen microbes improve protein and fiber degradation and reduce feed energy loss as methane in ruminants fed tropical plant species.Copyright © 2020 Ku-Vera, Jiménez-Ocampo, Valencia-Salazar, Montoya-Flores, Molina-Botero, Arango, Gómez-Bravo, Aguilar-Pérez and Solorio-Sánchez.Ku-VeraJuan CarlosJCLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.Jiménez-OcampoRafaelRLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico.Valencia-SalazarSara StephanieSSCollege of the Southern Border (ECOSUR), Livestock and Environment, San Cristóbal de las Casas, Mexico.Montoya-FloresMaría DenisseMDNational Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Ajuchitlan, Queretaro, Mexico.Molina-BoteroIsabel CristinaICDepartment of Nutrition, Faculty of Animal Science, National Agrarian University La Molina, Lima, Peru.ArangoJacoboJInternational Center for Tropical Agriculture (CIAT), Cali, Colombia.Gómez-BravoCarlos AlfredoCADepartment of Nutrition, Faculty of Animal Science, National Agrarian University La Molina, Lima, Peru.Aguilar-PérezCarlos FernandoCFLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.Solorio-SánchezFrancisco JavierFJLaboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.engJournal ArticleReview20200827
SwitzerlandFront Vet Sci1016666582297-1769essential oilsflavonoidsmethaneruminantssaponinstannins
20205920207212020111685520201117602020111761202011epublish33195495PMC748144610.3389/fvets.2020.00584Delgado CL, Rosegrant MW, Steinfeld H, Ehui SK, Courbois C, International Food Policy Research Institute, FAO, International Livestock Research Institute (editors). Livestock to 2020: The Next Food Revolution. Washington, DC: (1999).Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal. (2020) 14:s2–16. 10.1017/S175173111900310010.1017/S175173111900310032024560IPCC ed. Introduction. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge;New York, NY: Cambridge University Press; (2013).Ali AIM, Wassie SE, Korir D, Goopy JP, Merbold L, Butterbach-Bahl K, et al. . Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. J Animal Physiol Animal Nutr. (2019) 103:1325–37. 10.1111/jpn.1315810.1111/jpn.1315831318115Goopy JP, Korir D, Pelster D, Ali AIM, Wassie SE, Schlecht E, et al. . Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. Br J Nutr. (2020) 123:1–8. 10.1017/S000711451900335010.1017/S0007114519003350PMC751214332209141Firkins JL, Yu Z. Ruminant nutrition symposium: how to use data on the rumen microbiome to improve our understanding of ruminant nutrition. J Animal Sci. (2015) 93:1450–70. 10.2527/jas.2014-875410.2527/jas.2014-875426020167Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. Tiny but mighty: the role of the rumen microbes in livestock production. J Anim Sci. (2018) 96:752–70. 10.1093/jas/skx05310.1093/jas/skx053PMC614098329385535Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, et al. . Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. J Dairy Sci. (2019) 102:3781–804. 10.3168/jds.2018-1498510.3168/jds.2018-1498530904293Aboling S, Drotleff AM, Cappai MG, Kamphues J. Contamination with ergot bodies (Claviceps purpurea sensu lato) of two horse pastures in Northern Germany. Mycotoxin Res. (2016) 32:207–19. 10.1007/s12550-016-0253-y10.1007/s12550-016-0253-y27495979Ørskov ER, Flatt WP, Moe PW. Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. J Dairy Sci. (1968) 51:1429–35. 10.3168/jds.S0022-0302(68)87208-X10.3168/jds.S0022-0302(68)87208-XHuws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, et al. . Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front Microbiol. (2018) 9:2161. 10.3389/fmicb.2018.0216110.3389/fmicb.2018.02161PMC616746830319557O'Hara E, Neves ALA, Song Y, Guan LL. The role of the gut microbiome in cattle production and health: driver or passenger? Ann Rev Anim Biosci. (2020) 8:199–220. 10.1146/annurev-animal-021419-08395210.1146/annurev-animal-021419-08395232069435Chen J, Harstad OM, McAllister T, Dörsch P, Holo H. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Acta Agri Scand. (2020) 69:1–7. 10.1080/09064702.2020.173721510.1080/09064702.2020.1737215Kittelmann S, Pinares-Patiño CS, Seedorf H, Kirk MR, Ganesh S, McEwan JC, et al. . Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE. (2014) 9:e103171. 10.1371/journal.pone.010317110.1371/journal.pone.0103171PMC411753125078564Lan W, Yang C. Ruminal methane production: associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci Total Environ. (2019) 654:1270–83. 10.1016/j.scitotenv.2018.11.18010.1016/j.scitotenv.2018.11.18030841400Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. . Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. (2019) 9:11. 10.1038/s41598-018-36673-w10.1038/s41598-018-36673-wPMC632703330626904Cunha CS, Marcondes MI, Veloso CM, Mantovani HC, Pereira LGR, Tomich TR, et al. . Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production. J Sci Food Agr. (2019) 99:210–8. 10.1002/jsfa.916210.1002/jsfa.916229851082Global Rumen Census Collaborators. Henderson G, Cox F, Ganesh S, Jonker A, Young W, et al. . Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. (2015) 5:14567. 10.1038/srep1456710.1038/srep14567PMC459881126449758Topps JH. Potential, composition and use of legume shrubs and trees as fodders for livestock in the tropics. J Agr Sci. (1992) 118:1–8. 10.1017/S002185960006794010.1017/S0021859600067940Ku Vera JC, Ramírez Avilés, Jiménez-Ferrer, Alayon-Gamboa Ramírez-Cancino Árboles y arbustos para la producción animal en el trópico mexicano. In: Agroforestería Para la Producción Animal en América Latina. Rome: FAO Food and Agriculture Organization of the United Nations; (2019). p. 231–57.Vandermeulen S, Ramírez-Restrepo CA, Beckers Y, Claessens H, Bindelle J. Agroforestry for ruminants: a review of trees and shrubs as fodder in silvopastoral temperate and tropical production systems. Anim Product Sci. (2018) 58:767 10.1071/AN1643410.1071/AN16434Shelton M, Dalzell S. Production, economic and environmental benefits of leucaena pastures. Trop Grasslands. (2007) 41:174–90.Makkar HPS, Francis G, Becker K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal. (2007) 1:1371–91. 10.1017/S175173110700029810.1017/S175173110700029822444893Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol. (2008) 145:209–28. 10.1016/j.anifeedsci.2007.04.01410.1016/j.anifeedsci.2007.04.014Patra A, Saxena J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nut Res Rev. (2009) 22:204–19. 10.1017/S095442240999016310.1017/S095442240999016320003589Patra A, Park T, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol. (2017) 8:13. 10.1186/s40104-017-0145-910.1186/s40104-017-0145-9PMC527037128149512Newbold CJ, El Hassan SM, Wang J, Ortega ME, Wallace RJ. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br J Nut. (1997) 78:237–49. 10.1079/BJN1997014310.1079/BJN199701439301414Kamra DN, Singh B. Rumen microbiome Plant Secondary Metabolites (PSM): inhibition of methanogenesis improving nutrient utilization. In: Satyanarayana T, Deshmukh SK, Deshpande MV. editors. Advancing Frontiers in Mycology & Mycotechnology. Singapore: Springer Singapore; (2019). p. 325–45. 10.1007/978-981-13-9349-5_1310.1007/978-981-13-9349-5_13Kamra DN. Rumen microbial ecosystem. Curr Sci. (2005) 81:124–35.Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci. (2008) 1125:171–89. 10.1196/annals.1419.01910.1196/annals.1419.01918378594Van Soest PJ. Nutritional Ecology of the Ruminant. Ithaca, NY: Cornell University Press; (1994).Malik PK, Kolte AP, Baruah L, Saravanan M, Bakshi B, Bhatta R. Enteric methane mitigation in sheep through leaves of selected tanniniferous tropical tree species. Livestock Sci. (2017) 200:29–34. 10.1016/j.livsci.2017.04.00110.1016/j.livsci.2017.04.001Schäfer G, Engelhard M, Müller V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev. (1999) 63:570–620. 10.1128/MMBR.63.3.570-620.199910.1128/MMBR.63.3.570-620.1999PMC10374710477309Czerkawski JW. An Introduction to Rumen Studies. New York, NY: Pergamon Press; (1986). 10.1016/B978-0-08-025486-9.50007-410.1016/B978-0-08-025486-9.50007-4Warner D, Bannink A, Hatew B, van Laar H, Dijkstra J. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows1. J Anim Sci. (2017) 95:3687–99. 10.2527/jas.2017.145910.2527/jas.2017.145928805897IPCC 2006 IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K. editors. Prepared by the National Greenhouse Gas Inventories Programme. IGES; (2006).van Lingen HJ, Plugge CM, Fadel JG, Kebreab E, Bannink A, Dijkstra J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE. (2016) 11:e0161362 10.1371/journal.pone.016136210.1371/journal.pone.0161362PMC508117927783615Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, et al. . Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal. (2018) 12:s321–35. 10.1017/S175173111800148910.1017/S175173111800148930139392Sarwar Gilani G, Wu Xiao C, Cockell KA. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nut. (2012) 108:S315–32. 10.1017/S000711451200237110.1017/S000711451200237123107545Naumann HD, Tedeschi LO, Zeller WE, Huntley NF. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Revista Brasileira de Zootecnia. (2017) 46:929–49. 10.1590/s1806-9290201700120000910.1590/s1806-92902017001200009Olagaray KE, Bradford BJ. Plant flavonoids to improve productivity of ruminants – A review. Anim Feed Sci Technol. (2019) 251:21–36. 10.1016/j.anifeedsci.2019.02.00410.1016/j.anifeedsci.2019.02.004Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ. (2016) 545–546:556–8. 10.1016/j.scitotenv.2015.12.10310.1016/j.scitotenv.2015.12.10326760275Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem. (2014) 22:132–49. 10.2174/092986732166614091611344310.2174/092986732166614091611344325245513Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, et al. . Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals. (2020) 10:300. 10.3390/ani1002030010.3390/ani10020300PMC707048232069951Valencia Salazar SS, Piñeiro Vázquez AT, Molina Botero IC, Lazos Balbuena FJ, Uuh Narváez JJ, Segura Campos MR, et al. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agri Forest Meteorol. (2018) 258:108–16. 10.1016/j.agrformet.2017.12.26210.1016/j.agrformet.2017.12.262Molina-Botero IC, Montoya-Flores MD, Zavala-Escalante LM, Barahona-Rosales R, Arango J, Ku-Vera JC. Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. J Anim Sci. (2019) 97:1619–33. 10.1093/jas/skz06710.1093/jas/skz067PMC644724330785622Stoldt A-K, Derno M, Das G, Weitzel JM, Wolffram S, Metges CC. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J Dairy Sci. (2016) 99:2161–8. 10.3168/jds.2015-1014310.3168/jds.2015-1014326805964Molina IC, Angarita EA, Mayorga OL, Chará J, Barahona-Rosales R. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Sci. (2016) 185:24–9. 10.1016/j.livsci.2016.01.00910.1016/j.livsci.2016.01.009Patra A, Kamra DN, Bhar R, Kumar R, Agarwal N. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep: methane inhibition in sheep by plant feed additives. J Anim Physiol Anim Nutr. (2011) 95:187–91. 10.1111/j.1439-0396.2010.01039.x10.1111/j.1439-0396.2010.01039.x20666858Abdalla AL, Louvandini H, Sallam SMAH, Bueno IC da S, Tsai SM, Figueira AV de O. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop Anim Health Product. (2012) 44:953–64. 10.1007/s11250-011-9992-010.1007/s11250-011-9992-022083272Wanapat M, Chanthakhoun V, Phesatcha K, Kang S. Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in swamp buffaloes. Livestock Sci. (2014) 162:126–33. 10.1016/j.livsci.2014.01.02510.1016/j.livsci.2014.01.025Anantasook N, Wanapat M, Cherdthong A. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J Anim Physiol Anim Nutr. (2014) 98:50–5. 10.1111/jpn.1202910.1111/jpn.1202923294319Seradj AR, Abecia L, Crespo J, Villalba D, Fondevila M, Balcells J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol. (2014) 197:85–91. 10.1016/j.anifeedsci.2014.08.01310.1016/j.anifeedsci.2014.08.013Abarghuei MJ, Rouzbehan Y, Salem AZM, Zamiri MJ. Nutrient digestion, ruminal fermentation and performance of dairy cows fed pomegranate peel extract. Livestock Sci. (2013) 157:452–61. 10.1016/j.livsci.2013.09.00710.1016/j.livsci.2013.09.007Susanne S, Carmen K, Annette L, Ueli B, Svenja M, Carla RS, et al. In vitro bioactivity of various pure flavonoids in ruminal fermentation, with special reference to methane formation. Czech J Anim Sci. (2018) 63:293–304. 10.17221/118/2017-CJAS10.17221/118/2017-CJASOskoueian E, Abdullah N, Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed ResInt. (2013) 2013:1–8. 10.1155/2013/34912910.1155/2013/349129PMC379451624175289Kim ET, Guan LL, Lee SJ, Lee SM, Lee SS, Lee ID, et al. . Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australasian J Anim Sci. (2015) 28:530–7. 10.5713/ajas.14.069210.5713/ajas.14.0692PMC434110225656200Al-Sagheer AA, Elwakeel EA, Ahmed MG, Sallam SMA. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability. Environ Sci Pollut Res. (2018) 25:31450–58. 10.1007/s11356-018-3152-210.1007/s11356-018-3152-230203345Cherdthong A, Khonkhaeng B, Foiklang S, Wanapat M, Gunun N, Gunun P, et al. . Effects of supplementation of piper sarmentosum leaf powder on feed efficiency, rumen ecology and rumen protozoal concentration in thai native beef cattle. Animals. (2019) 9:130. 10.3390/ani904013010.3390/ani9040130PMC652322530934916Ramos-Morales E, Rossi G, Cattin M, Jones E, Braganca R, Newbold CJ. The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. FEMS Microbiol Ecol. (2018) 94: fiy009. 10.1093/femsec/fiy00910.1093/femsec/fiy009PMC601896329361159Jafari S, Goh YM, Rajion MA, Jahromi MF, Ahmad YH, Ebrahimi M. Papaya Carica papaya leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation: effect of papaya leaf extract on rumen. Anim Sci J. (2017) 88:267–76. 10.1111/asj.1263410.1111/asj.1263427345820Patra A, Yu Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl Environ Microbiol. (2012) 78:4271–80. 10.1128/AEM.00309-1210.1128/AEM.00309-12PMC337052122492451Giannenas I, Skoufos J, Giannakopoulos C, Wiemann M, Gortzi O, Lalas S, et al. . Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J Dairy Sci. (2011) 94:5569–77. 10.3168/jds.2010-409610.3168/jds.2010-409622032380Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, et al. . Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci. (2020) 103:2303–14. 10.3168/jds.2019-1661110.3168/jds.2019-1661131954586Khorrami B, Vakili AR, Mesgaran MD, Klevenhusen F. Thyme and cinnamon essential oils: Potential alternatives for monensin as a rumen modifier in beef production systems. Animal Feed Science and Technology. (2015) 200:8–16. 10.1016/j.anifeedsci.2014.11.00910.1016/j.anifeedsci.2014.11.009Goel G, Makkar HPS. Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Product. (2012) 44:729–39. 10.1007/s11250-011-9966-210.1007/s11250-011-9966-221894531Ferreira D, Brandt EV, Coetzee J, Malan E. Condensed tannins. Prog Chem Org Nat Prod. (1999) 77:22–59. 10.1007/978-3-7091-6366-5_210.1007/978-3-7091-6366-5_20Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Technol. (2005) 123–124:403–19. 10.1016/j.anifeedsci.2005.04.03710.1016/j.anifeedsci.2005.04.037Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric. (2006) 86:2010–37. 10.1002/jsfa.257710.1002/jsfa.2577Ramírez-Avilés L, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ayala-Burgos AJ, Ku-Vera JC. Leucaena leucocephala feeding systems for cattle production in Mexico. Trop Grasslands-Forrajes Trop. (2019) 7:375–80. 10.17138/tgft(7)375-38010.17138/tgft(7)375-380Harrison MT, McSweeney C, Tomkins NW, Eckard RJ. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agr Syst. (2015) 136:138–46. 10.1016/j.agsy.2015.03.00310.1016/j.agsy.2015.03.003Saminathan M, Tan H, Sieo C, Abdullah N, Wong C, Abdulmalek E, et al. . Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid. Molecules. (2014) 19:7990–8010. 10.3390/molecules1906799010.3390/molecules19067990PMC627069624927368Suybeng B, Charmley E, Gardiner CP, Malau-Aduli BS, Malau-Aduli AEO. Methane emissions and the use of desmanthus in beef cattle production in Northern Australia. Animals. (2019) 9:542. 10.3390/ani908054210.3390/ani9080542PMC671924131404998Pal K, Patra A, Sahoo A, Kumawat PK. Evaluation of several tropical tree leaves for methane production potential, degradability and rumen fermentation in vitro. Livestock Sci. (2015) 180:98–105. 10.1016/j.livsci.2015.07.01110.1016/j.livsci.2015.07.011Manasri N, Wanapat M, Navanukraw C. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livestock Sci. (2012) 148:291–5. 10.1016/j.livsci.2012.06.00910.1016/j.livsci.2012.06.009Rira M, Morgavi DP, Archimède H, Marie-Magdeleine C, Popova M, Bousseboua H, et al. . Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J Anim Sci. (2015) 93:334–47. 10.2527/jas.2014-796110.2527/jas.2014-796125568379Kalinowska M, Zimowski J, Paczkowski C, Wojciechowski ZA. The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochem Rev. (2005) 4:237–57. 10.1007/s11101-005-1422-310.1007/s11101-005-1422-3Makkar HPS, Blümmel M, Becker K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J Sci Food Agri. (1995) 69:481–93. 10.1002/jsfa.274069041310.1002/jsfa.2740690413Wallace R, McEwan NR, McIntosh FM, Teferedegne B, Newbold CJ. Natural products as manipulators of rumen fermentation. Asian-Australasian J Anim Sci. (2002) 15:1458–68. 10.5713/ajas.2002.145810.5713/ajas.2002.1458Chen RJ, Chung T, Li F, Lin N, Tzen JT. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol Sinica. (2009) 30:61–9. 10.1038/aps.2008.610.1038/aps.2008.6PMC400653019060914Ramos-Morales E, Arco-Pérez A, Martín-García AI, Yáñez-Ruiz DR, Frutos P, Hervás G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim Feed Sci Technol. (2014) 198:57–66. 10.1016/j.anifeedsci.2014.09.01610.1016/j.anifeedsci.2014.09.016Wina E, Muetzel S, Becker K. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins. J Appl Microbiol. (2006) 100:114–22. 10.1111/j.1365-2672.2005.02746.x10.1111/j.1365-2672.2005.02746.x16405691Ojeda A, Barroso JA, Obispo N, Gil JL, Cegarra R. Composición química, producción de gas in vitro y astringencia en el follaje de Samanea saman (Jacq.) Merrill. Pastos y Forrajes. (2012) 35:205–18.Jiménez-Hernández J, Meneses-Esparza F, Rosendo-Escobar J, Vivar-Vera MA, Bello-Pérez LA, García-Suárez FJ. Extracción y caracterización del almidón de las semillas de Enterolobium cyclocarpum extraction and characterization of starch from Enterolobium cyclocarpum seeds. CyTA - J Food. (2011) 9:89–95. 10.1080/1947633100374362610.1080/19476331003743626Moscoso C, Vélez M, Flores A, Agudelo N. Effects of guanacaste tree (Enterolobium cyclocarpum Jacq. Griseb.) fruit as replacement for sorghum grain and cotton-seed meal in lamb diets. Small Ruminant Res. (1995) 18:121–4. 10.1016/0921-4488(95)00677-D10.1016/0921-4488(95)00677-DBriceño-Poot EG, Ruiz-González A, Chay-Canul AJ, Ayala-Burgos AJ, Aguilar-Pérez CF, Solorio-Sánchez FJ, et al. Voluntary intake, apparent digestibility and prediction of methane production by rumen stoichiometry in sheep fed pods of tropical legumes. Anim Feed Sci Technol. (2012) 176:117–22. 10.1016/j.anifeedsci.2012.07.01410.1016/j.anifeedsci.2012.07.014Ivan M, Koenig KM, Teferedegne B, Newbold CJ, Entz T, Rode LM, et al. Effects of the dietary Enterolobium cyclocarpum foliage on the population dynamics of rumen ciliate protozoa in sheep. Small Ruminant Res. (2004) 52:81–91. 10.1016/S0921-4488(03)00230-X10.1016/S0921-4488(03)00230-XKoenig KM, Ivan M, Teferedegne BT, Morgavi DP, Rode LM, Ibrahim IM, et al. Effect of dietary Enterolobium cyclocarpum on microbial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixed fauna or with Entodinium caudatum monofauna. Br J Nutr. (2007) 98:504–16. 10.1017/S000711450772393010.1017/S000711450772393017459191Hess HD, Kreuzer M, Diaz TE, Lascano CE, Carulla JE, Soliva CR, et al. . Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim Feed Sci Technol. (2003) 109:79–94. 10.1016/S0377-8401(03)00212-810.1016/S0377-8401(03)00212-80Soliva CR, Zeleke AB, Clément C, Hess HD, Fievez V, Kreuzer M. In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim Feed Sci Technol. (2008) 147:53–71. 10.1016/j.anifeedsci.2007.09.00910.1016/j.anifeedsci.2007.09.009Hart KJ, Yáñez-Ruiz DR, Duval SM, McEwan NR, Newbold CJ. Plant extracts to manipulate rumen fermentation. Anim Feed Sci Technol. (2008) 147:8–35. 10.1016/j.anifeedsci.2007.09.00710.1016/j.anifeedsci.2007.09.007Oni AO, Onwuka CFI, Oduguwa OO, Onifade OS, Arigbede OM. Utilization of citrus pulp based diets and Enterolobium cyclocarpum (JACQ. GRISEB) foliage by West African dwarf goats. Livestock Sci. (2008) 117:184–91. 10.1016/j.livsci.2007.12.01010.1016/j.livsci.2007.12.010Albores-Moreno S, Alayón-Gamboa JA, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Olivera-Castillo L, et al. . Effects of feeding ground pods of Enterolobium cyclocarpum Jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by Pelibuey sheep fed tropical grass. Trop Anim Health Product. (2017) 49:857–66. 10.1007/s11250-017-1275-y10.1007/s11250-017-1275-y28337571Ugbogu EA, Elghandour MMMY, Ikpeazu VO, Buendía GR, Molina OM, Arunsi UO, et al. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Product. (2019) 213:915–25. 10.1016/j.jclepro.2018.12.23310.1016/j.jclepro.2018.12.233Szumacher-Strabel M, Cieślak A, Nowakowska A. Effect of oils rich in linoleic acid on in vitro rumen fermentation parameters of sheep, goats and dairy cows. J Anim Feed Sci. (2009) 18:440–52. 10.22358/jafs/66419/200910.22358/jafs/66419/2009Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. (2000) 88:308–16. 10.1046/j.1365-2672.2000.00969.x10.1046/j.1365-2672.2000.00969.x10736000Jouany J-P, Morgavi DP. Use of ‘natural' products as alternatives to antibiotic feed additives in ruminant production. Animal. (2007) 1:1443–66. 10.1017/S175173110700074210.1017/S175173110700074222444918Szumacher-Strabel M, Cieślak A. Potential of phytofactors to mitigate rumen ammonia and methane production. J Anim Feed Sci. (2010) 19:319–37. 10.22358/jafs/66296/201010.22358/jafs/66296/2010Patra A. (editor). Dietary Phytochemicals and Microbes. Dordrecht: Springer Netherlands; (2012). 10.1007/978-94-007-3926-010.1007/978-94-007-3926-0Mohammed N, Ajisaka N, Lila ZA, Hara K, Mikuni K, Hara K, et al. . Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers1. J Anim Sci. (2004) 82:1839–46. 10.2527/2004.8261839x10.2527/2004.8261839x15217012Benchaar C. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J Dairy Sci. (2020) 103:1516–27. 10.3168/jds.2019-1723010.3168/jds.2019-1723031759586Belanche A, Newbold CJ, Morgavi DP, Bach A, Zweifel B, Yáñez-Ruiz DR. A meta-analysis describing the effects of the essential oils blend agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals. (2020) 10:620. 10.3390/ani1004062010.3390/ani10040620PMC722280732260263Castro-Montoya J, Peiren N, Cone JW, Zweifel B, Fievez V, De Campeneere S. In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livestock Sci. (2015) 180:134–42. 10.1016/j.livsci.2015.08.01010.1016/j.livsci.2015.08.010Wu P, Liu ZB, He WF, Yu SB, Gao G, Wang JK. Intermittent feeding of citrus essential oils as a potential strategy to decrease methane production by reducing microbial adaptation. J Clean Product. (2018) 194:704–13. 10.1016/j.jclepro.2018.05.16710.1016/j.jclepro.2018.05.167Wang B, Jia M, Fang L, Jiang L, Li Y. Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. J Anim Sci. (2018) 96:3460–70. 10.1093/jas/sky21610.1093/jas/sky216PMC609544429860505Bampidis VA, Robinson PH. Citrus by-products as ruminant feeds: a review. Anim Feed Sci Technol. (2006) 128:175–217. 10.1016/j.anifeedsci.2005.12.00210.1016/j.anifeedsci.2005.12.002Faustino-Lázaro B, González-Reyna A, Bernal-Barragán H, Gómez-Hernández L, Ibarra-Hinojosa M, Martínez-González J. Comportamiento productivo de corderas de pelo, alimentadas con pulpa fresca de limón como fuente energética. Rev MVZ Córdoba. (2016) 21:5480–9. 10.21897/rmvz.82210.21897/rmvz.822Klevenhusen F, Zeitz JO, Duval S, Kreuzer M, Soliva CR. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol. (2011) 166–167:356–63. 10.1016/j.anifeedsci.2011.04.07110.1016/j.anifeedsci.2011.04.071Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. (2000) 55:481–504. 10.1016/S0031-9422(00)00235-110.1016/S0031-9422(00)00235-111130659Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. (2001) 74:418–25. 10.1093/ajcn/74.4.41810.1093/ajcn/74.4.41811566638Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. (2011) 38:99–107. 10.1016/j.ijantimicag.2011.02.01410.1016/j.ijantimicag.2011.02.01421514796Halbwirth H. The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci. (2010) 11:595–621. 10.3390/ijms1102059510.3390/ijms11020595PMC285285620386656Cui K, Guo XD, Tu Y, Zhang NF, Ma T, Diao QY. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows. J Animal Physiol Anim Nutr. (2015) 99:1065–73. 10.1111/jpn.1233410.1111/jpn.1233426053391Zhan J, Liu M, Su X, Zhan K, Zhang C, Zhao G. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australasian J Anim Sci. (2017) 30:1416–24. 10.5713/ajas.16.057910.5713/ajas.16.0579PMC558232628423878McDermott JJ, Staal SJ, Freeman HA, Herrero M, Van de Steeg JA. Sustaining intensification of smallholder livestock systems in the tropics. Livestock Sci. (2010) 130:95–109. 10.1016/j.livsci.2010.02.01410.1016/j.livsci.2010.02.014Thornton PK. Livestock production: recent trends, future prospects. Philos Trans R Soc B: Biol Sci. (2010) 365:2853–67. 10.1098/rstb.2010.013410.1098/rstb.2010.0134PMC293511620713389Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, et al. . The roles of livestock in developing countries. Animal. (2013) 7:3–18. 10.1017/S175173111200195410.1017/S175173111200195423121696Dangal SRS, Tian H, Zhang B, Pan S, Lu C, Yang J. Methane emission from global livestock sector during 1890-2014: Magnitude, trends and spatiotemporal patterns. Global Change Biol. (2017) 23:4147–61. 10.1111/gcb.1370910.1111/gcb.1370928370720Food and Agriculture Organization of the United Nations . Developing Sustainable Value Chains for Small-Scale Livestock Producers. Rome: Food and Agriculture Organization of the United Nations; (2019).World Economic Forum Options for the Livestock Sector in Developing and Emerging Economies to 2030 and Beyond. Geneva: Switzerland; (2019).Leal Filho W, Morgan EA, Godoy ES, Azeiteiro UM, Bacelar-Nicolau P, Veiga Ávila L, et al. Implementing climate change research at universities: barriers, potential and actions. J Clean Product. (2018) 170:269–77. 10.1016/j.jclepro.2017.09.10510.1016/j.jclepro.2017.09.105Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nat Climate Change. (2016) 6:452–61. 10.1038/nclimate292510.1038/nclimate2925Kumari S, Fagodiya RK, Hiloidhari M, Dahiya RP, Kumar A. Methane production and estimation from livestock husbandry: a mechanistic understanding and emerging mitigation options. Sci Total Environ. (2020) 709:136135. 10.1016/j.scitotenv.2019.13613510.1016/j.scitotenv.2019.13613531927428Salmon GR, MacLeod M, Claxton JR, Pica Ciamarra U, Robinson T, Duncan A, et al. . Exploring the landscape of livestock ‘Facts.' Global Food Security. (2020) 25:100329. 10.1016/j.gfs.2019.10032910.1016/j.gfs.2019.100329PMC729907432566469Key N, Tallard G. Mitigating methane emissions from livestock: a global analysis of sectoral policies. Climatic Change. (2012) 112:387–414. 10.1007/s10584-011-0206-610.1007/s10584-011-0206-6Ndung'u PW, Bebe BO, Ondiek JO, Butterbach-Bahl K, Merbold L, Goopy JP. Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Anim Product Sci. (2019) 59:1136 10.1071/AN1780910.1071/AN17809
3206995120200928
2076-26151022020Feb13Animals : an open access journal from MDPIAnimals (Basel)Effect of Dried Leaves of Leucaena leucocephala on Rumen Fermentation, Rumen Microbial Population, and Enteric Methane Production in Crossbred Heifers.30010.3390/ani10020300The effects of dietary inclusion of dried Leucaena leucocephala leaves (DLL) on nutrient digestibility, fermentation parameters, microbial rumen population, and production of enteric methane (CH4) in crossbred heifers were evaluated. Four heifers were used in a 4 × 4 Latin square design consisting of four periods and four levels of inclusion of DLL: 0%, 12%, 24%, and 36% of dry matter (DM) intake. Results showed that DM intake (DMI), organic matter intake, and gross energy intake (GEI) were similar (p > 0.05) among treatments. Apparent digestibility of organic matter, neutral detergent fiber, and energy decreased with increasing levels of DLL in the ration (p < 0.05). In contrast, digestible crude protein (CP) was higher (p < 0.05) in treatments with 12% and 24% DM of DLL. The inclusion of DLL did not affect (p > 0.05) rumen pH and total volatile fatty acids. Rumen microbial community was not affected (p > 0.05) by treatment. There was a linear reduction (p < 0.05) in CH4 emissions as the levels of DLL in the ration were increased. Results of this study suggest that an inclusion of 12% DM of ration as DLL enhances digestible CP and reduces daily production of enteric CH4 without adversely affecting DMI, rumen microbial population, and fermentation parameters.Montoya-FloresMaría DenisseMDFaculty of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, Mérida 97300, Mexico.National Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Crops, and Livestock Research - Ministry of Agriculture and Rural Development, Ajuchitlán 76280, Mexico.Molina-BoteroIsabel CristinaICFaculty of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, Mérida 97300, Mexico.The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A. 6713 Cali, Colombia.ArangoJacoboJThe Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A. 6713 Cali, Colombia.Romano-MuñozJosé LuisJLNational Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Crops, and Livestock Research - Ministry of Agriculture and Rural Development, Ajuchitlán 76280, Mexico.Solorio-SánchezFrancisco JavierFJ0000-0002-1384-8639Faculty of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, Mérida 97300, Mexico.Aguilar-PérezCarlos FernandoCFFaculty of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, Mérida 97300, Mexico.Ku-VeraJuan CarlosJCFaculty of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, Mérida 97300, Mexico.engJournal Article20200213
SwitzerlandAnimals (Basel)1016356142076-2615Leucaena leucocephaladigestibilitymethanevolatile fatty acidsThe authors declare no competing financial and non-financial interests.
201912272020212020282020220602020220602020220612020213epublish32069951PMC707048210.3390/ani10020300ani10020300Cubasch U., Wuebbles D., Chen D., Facchini M.C., Frame D., Mahowald N., Winther J.G. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2013. Climate Change 2013: The Physical Science Basis.Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO); Rome, Italy: 2013.Intergovermental Panel on Climate Change . Synthesis Report. Contribution of Working Groups I, II and III to the Fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2007. Climate Change 2007.Intergovermental Panel on Climate Change . Guidelines for National Greenhouse Gas Inventories. National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies; Hamaya, Japan: 2006.Kennedy P.M., Charmley E. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim. Prod. Sci. 2012;52:225–239. doi: 10.1071/AN11103.10.1071/AN11103Ohene-Adjei S., Chaves A.V., McAllister T.A., Benchaar C., Teather R.M., Forster R.J. Evidence of increased diversity of methanogenic archaea with plant extract supplementation. Microb. Ecol. 2008;56:234–242. doi: 10.1007/s00248-007-9340-0.10.1007/s00248-007-9340-018075710Animut G., Puchala R., Goetsch A.L., Patra A.K., Sahlu T., Varel V.H., Wells J. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 2008;144:212–227. doi: 10.1016/j.anifeedsci.2007.10.014.10.1016/j.anifeedsci.2007.10.014Beauchemin K.A., McGinn S.M., Martinez T.F., McAllister T.A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007;85:1990–1996. doi: 10.2527/jas.2006-686.10.2527/jas.2006-68617468433Grainger C., Clarke T., Auldist M.J., Beauchemin K.A., McGinn S.M., Waghorn G.C., Eckard R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. J. Anim. Sci. 2009;89:241–251. doi: 10.4141/CJAS08110.10.4141/CJAS08110Patra A.K., Kamra D.N., Bhar R., Kumar R., Agarwal N. Plant secondary metabolites present in Terminalia chebula and Allium sativum reduce methane emission in sheep. Aust. J. Exp. Agric. 2008;48:lxx–lxxi. doi: 10.1111/j.1439-0396.2010.01039.x.10.1111/j.1439-0396.2010.01039.xRomero-Pérez A., Okine E.K., Guan L.L., Duval S.M., Kindermann M., Beauchemin K.A.A. Rapid Communication: Evaluation of methane inhibitor 3-nitrooxypropanol and monensin in a high-grain diet using the rumen simulation technique (Rusitec) J. Anim. Sci. 2017;95:4072–4077. doi: 10.2527/jas2017.1896.10.2527/jas2017.189628992012Harrison M.T., McSweeney C., Tomkins N., Eckard R.J. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric. Syst. 2015;136:138–146. doi: 10.1016/j.agsy.2015.03.003.10.1016/j.agsy.2015.03.003Moreira G.D., Lima P.T., Borges B.O., Primavesi O., Longo C., McManus C., Abdalla A., Louvandini H. Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission. Trop. Anim. Health Prod. 2013;45:879–882. doi: 10.1007/s11250-012-0284-0.10.1007/s11250-012-0284-023054809Makkar H.P.S., Blümmel M., Becker K. Formation of complexes between polyvinyl pyrrolidone and polyethylene glycol with tannins and their implications in gas production and true digestibility in in vitro techniques. Brit. J. Nutr. 1995;73:897–913. doi: 10.1079/BJN19950095.10.1079/BJN199500957632671Schofield P., Mbugua D.M., Pell A.N. Analysis of condensed tannins: A review. Anim. Feed Sci. Technol. 2001;91:21–40. doi: 10.1016/S0377-8401(01)00228-0.10.1016/S0377-8401(01)00228-0Harun N.L.A., Alimon A.R., Jahromi M.F., Samsudin A.A. Effects of feeding goats with Leucaena leucocephala and Manihot esculenta leaves supplemented diets on rumen fermentation profiles, urinary purine derivatives and rumen microbial population. J. Appl. Anim. Res. 2017;45:409–416. doi: 10.1080/09712119.2016.1205499.10.1080/09712119.2016.1205499McSweeney C.S., Palmer B., Bunch R., Krause D.O. Effect of tropical forage Calliandra on microbial protein synthesis and ecology in the rumen. J. Appl. Microbiol. 2001;90:78–88. doi: 10.1046/j.1365-2672.2001.01220.x.10.1046/j.1365-2672.2001.01220.x11155126Patra A.K., Saxena J.A. New perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 2010;71:1198–1222. doi: 10.1016/j.phytochem.2010.05.010.10.1016/j.phytochem.2010.05.01020570294Agricultural Food and Research Council . Energy and Protein Requirements of Ruminants. An Advisory Manual Prepared by the Agricultural Food and Research Council Technical Committee on Responses to Nutrients. CAB International; Wallingford, UK: 1993. p. 68.National Research Council . Nutrient Requirements of Dairy Cattle: Seventh Revised Ed. The National Academies Press; Washington, DC, USA: 2001. p. 4.Schneider B.H., Flatt W.P. The Evaluation of Feeds through Digestibility Experiments. University of Georgia Press; Athens, GA, USA: 1975. p. 168.National Research Council . Nutrient Requirements of Beef Cattle. 7th Revised ed. The National Academies Press; Washington, DC, USA: 2000. p. 3.AOAC . Official Methods of Analysis of AOAC International. 18th ed. AOAC International; Gaithersburg, MD, USA: 2005. pp. 24–44.Van Soest P.J., Robertson J.B., Lewis B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 1991;74:3583. doi: 10.3168/jds.S0022-0302(91)78551-2.10.3168/jds.S0022-0302(91)78551-21660498Tilley J., Terry R.A. Two-stage technique for the in vitro digestion of forage crops. J. Br. Grass. Soc. 1963;18:104–111. doi: 10.1111/j.1365-2494.1963.tb00335.x.10.1111/j.1365-2494.1963.tb00335.xMakkar H.P.S., Blümmel M., Borowy N.K., Becker K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993;61:161–165. doi: 10.1002/jsfa.2740610205.10.1002/jsfa.2740610205Price L.M., Butler G.L. Rapid visual estimation and spectrophotometric of tannin contents of sorghum grain. J. Agric. Food Chem. 1977;25:1268–1273. doi: 10.1021/jf60214a034.10.1021/jf60214a034Ramos-Morales E., Arco-Pérez A., Martín-García A.I., Yánez-Ruiz D.R., Frutos P., Hervás G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed. Sci. Technol. 2014;198:57–66. doi: 10.1016/j.anifeedsci.2014.09.016.10.1016/j.anifeedsci.2014.09.016Ryan J.P. Determination of volatile fatty acids and some related compounds in ovine rumen fluid, urine and blood plasma by gas-liquid chromatography. Anal. Biochem. 1980;108:374–384. doi: 10.1016/0003-2697(80)90602-8.10.1016/0003-2697(80)90602-87457884Rojas-Herrera R., Narváez-Zapata J., Zamudio-Maya M., Mena-Martínez M.E. A Simple Silica-based Method for Metagenomic DNA Extraction from Soil and Sediments. Mol. Biotechnol. 2008;40:13–17. doi: 10.1007/s12033-008-9061-8.10.1007/s12033-008-9061-818373226Yu Y., Lee C., Kim J., Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 2005;89:670–679. doi: 10.1002/bit.20347.10.1002/bit.2034715696537Hook S.E., Northwood K.S., Wright A.D.G., McBride B.W. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 2009;75:374–380. doi: 10.1128/AEM.01672-08.10.1128/AEM.01672-08PMC262070719028912Skillman L.C., Toovey A.F., Williams A.J., Wright A.D.G. Development and validation of a real time PCR method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet. J. Appl. Environ. Microbiol. 2006;72:200–220. doi: 10.1128/AEM.72.1.200-206.2006.10.1128/AEM.72.1.200-206.2006PMC135217916391043Lee C., Kim J., Shin S.G., Hwang S. Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J. Biotech. 2006;29:273–280. doi: 10.1016/j.jbiotec.2005.11.014.10.1016/j.jbiotec.2005.11.01416388869Canul-Solís J.R., Piñeiro-Vázquez A.T., Arceo-Castillo J., Alayón-Gamboa J.A., Ayala-Burgos A.J., Aguilar-Pérez C.F., Solorio-Sánchez F.J., Castelán-Ortega O.A., Lachica-López M., Quintana-Owen P., et al. Design and construction of low-cost respiration chambers for ruminal methane measurements in ruminants. Rev. Mex. Cienc. Pecu. 2017;8:185–191. doi: 10.22319/rmcp.v8i2.4442.10.22319/rmcp.v8i2.4442SAS Institute . SAS/STAT Software. SAS; Cary, NC, USA: 2006. Version 9.00.Mueller-Harvey I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006;86:2010–2037. doi: 10.1002/jsfa.2577.10.1002/jsfa.2577Soares S., Sousa A., Mateus N., De Freitas V. Effect of condensed tannins addition on the astringency of red wines. Chem. Senses. 2012;37:191–198. doi: 10.1093/chemse/bjr092.10.1093/chemse/bjr09222086902Musco N., Koura I.B., Tudisco R., Awadjihè G., Adjolohoun S., Cutrignelli M.I., Mollica M.P., Houinato M., Infascelli F., Calabrò S. Nutritional characteristics of forage grown in south of Benin. Asian-australas. J. Anim. Sci. 2016;29:51–61. doi: 10.5713/ajas.15.0200.10.5713/ajas.15.0200PMC469868926732328Piñeiro-Vázquez A.T., Jiménez-Ferrer G., Alayon-Gamboa J.A., Chay-Canul A.J., Ayala-Burgos A.J., Aguilar-Pérez C.F., Ku-Vera J.C. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. Trop. Anim. Health Prod. 2018;50:29–36. doi: 10.1007/s11250-017-1396-3.10.1007/s11250-017-1396-328905183Theodoridoua K., Aufrèrea J., Anduezaa D., Pourrata J., Morvana A.L., Stringanob E., Mueller-Harvey I., Baumonta R. Effects of condensed tannins in fresh sainfoin (Onobrychis viciifolia) on in vivo and in situ digestion in sheep. Anim. Feed Sci. Technol. 2010;160:23–38. doi: 10.1016/j.anifeedsci.2010.06.007.10.1016/j.anifeedsci.2010.06.007Aguerre M.J., Capozzolo M.C., Lencioni P., Cabral C., Wattiaux M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation and nitrogen partitioning in dairy cows. J. Dairy. Sci. 2016;99:4476–4486. doi: 10.3168/jds.2015-10745.10.3168/jds.2015-1074527060814Wanapat M., Cherdthong A., Phesatcha K., Kang S. Dietary sources and their effects on animal production and environmental sustainability. Anim. Nutr. 2015;1:96–103. doi: 10.1016/j.aninu.2015.07.004.10.1016/j.aninu.2015.07.004PMC594597629767156Huang X.D., Liang J.B., Tan H.Y., Yahya R., Khamseekhiew B., Ho Y.W. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Anim. Feed Sci. Technol. 2010;159:81–87. doi: 10.1016/j.anifeedsci.2010.05.008.10.1016/j.anifeedsci.2010.05.008Makkar H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds. Small Rumin. Res. 2003;49:241–256. doi: 10.1016/S0921-4488(03)00142-1.10.1016/S0921-4488(03)00142-1Waghorn G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 2008;147:116–139. doi: 10.1016/j.anifeedsci.2007.09.013.10.1016/j.anifeedsci.2007.09.013Phesatcha K., Wanapat M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J. Anim. Physiol. Anim. Nutr. 2017;101:552–562. doi: 10.1111/jpn.12458.10.1111/jpn.1245827079697Kariuki I., Norton B. The digestion of dietary protein bound by condensed tannins in the gastro-intestinal tract of sheep. Anim. Feed Sci. Technol. 2008;142:197–209. doi: 10.1016/j.anifeedsci.2007.08.006.10.1016/j.anifeedsci.2007.08.006France J., Dijkstra J. Quantitative Aspects of Ruminant Digestion and Metabolism. Wallingford; Cambridge, MA, USA: 2005. Volatile Fatty Acid Production; pp. 157–175.Patra A.K., Saxena J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie van Leeuwenhoek. 2009;96:363–375. doi: 10.1007/s10482-009-9364-1.10.1007/s10482-009-9364-119582589Blair K.E. Master’s Thesis. The University of Manitoba; Winnipeg, MB, Canada: 2015. Measured and modelled enteric methane emissions from beef cattle as affected by dietary crude protein of forage diets.Beck P., Gunter S., Gadberry S. Growing Cattle on Cool-Season Annual Grasses. University of Arkansas, Cooperative Extension Service; Fayetteville, AR, USA: 2005.Hammond A.C. 3rd Annual Florida Ruminant Nutrition Symposium. University of Florida; Gainesville, FL, USA: 1992. Use of blood urea nitrogen concentration to guide protein supplementation in cattle; pp. 9–18.Rhoads M.L., Rhoads R.P., Gilberto R.O., Toole R., Butler W.R. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows. Anim. Reprod. Sci. 2006;91:1–10. doi: 10.1016/j.anireprosci.2005.02.009.10.1016/j.anireprosci.2005.02.00916310096Detmann E., Valente É.E.L., Batista E.D., Huhtanen P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest. Sci. 2014;162:141–153. doi: 10.1016/j.livsci.2014.01.029.10.1016/j.livsci.2014.01.029Angarita E., Molina I., Villegas G., Mayorga O., Chará J., Barahona R. Quantitative analysis of rumen microbial populations by qPCR in heifers fed on Leucaena leucocephala in the Colombian Tropical Dry Forest. Acta Sci. Anim. Sci. 2015;37:135–142. doi: 10.4025/actascianimsci.v37i2.24836.10.4025/actascianimsci.v37i2.24836Saminathana M., Sieo C.C., Gan H.M., Abdullah N., Wong C.M.V.L., Ho Y.W. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Anim. Feed Sci. Technol. 2016;216:146–160. doi: 10.1016/j.anifeedsci.2016.04.005.10.1016/j.anifeedsci.2016.04.005Saminathan M., Gan H.M., Abdullah N., Wong C.M.V.L., Ramiah S.K., Tan H.Y., Sieo C.C., Ho Y.W. Changes in rumen protozoal community by condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid in vitro. J. Appl. Microbiol. 2017;123:41–53. doi: 10.1111/jam.13477.10.1111/jam.1347728434189Wallace R.J., Rooke J.A., McKain N., Duthie C.A., Hyslop J.J., Ross D.W., Waterhouse A., Watsonand M., Roehe R. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics. 2015;16:839. doi: 10.1186/s12864-015-2032-0.10.1186/s12864-015-2032-0PMC461925526494241Guyader J., Eugène M., Nozière P., Morgavi D.P., Doreau M., Martin C. Influence of rumen protozoa on methane emissions in ruminants: A meta-analysis approach. Animal. 2014;8:1816–1825. doi: 10.1017/S1751731114001852.10.1017/S175173111400185225075950Tavendale M.H., Meagher L.P., Pacheco D., Walker N., Attwood G.T., Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 2005;123–124:403–419. doi: 10.1016/j.anifeedsci.2005.04.037.10.1016/j.anifeedsci.2005.04.037Alcock D.J., Hegarty R.S. Potential effects of animal management and genetic improvement on metanic methane emissions, emission intensity and productivity of sheep enterprises at Cowra, Australia. Anim. Feed. Sci. Tech. 2011;166–167:749–760. doi: 10.1016/j.anifeedsci.2011.04.053.10.1016/j.anifeedsci.2011.04.053Herd R.M., Arthur P.F., Donogue K.A., Bird S.H., Bird-Garden T., Hegarty R.S. Measures of methane production and their phenotypic relationships with dry matter intake, grow, and body composition trails in beef cattle. J. Anim. Sci. 2014;92:5267–5274. doi: 10.2527/jas.2014-8273.10.2527/jas.2014-827325349368Carulla J.E., Kreuzer M., Machmüller A., Hess H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 2005;56:961–970. doi: 10.1071/AR05022.10.1071/AR05022de Klein C.A.M., Ledgard S.F. Nitrous oxide emissions from New Zealand agricultura-key sources and mitigation strategies. Nutr. Cycle Agroecosys. 2005;72:77–85. doi: 10.1007/s10705-004-7357-z.10.1007/s10705-004-7357-zSomda Z.C., Powell J.M. Seasonal decomposition of sheep manure and forage leaves in soil. Community Soil Sci. Plant Anal. 1998;29:2961–2979. doi: 10.1080/00103629809370169.10.1080/00103629809370169Maie N., Behrens A., Knicker H., Kögel-Knabner I. Changes in the structure and protein binding ability of condensed tannins during decomposition of fresh needles and leaves. Soil Biol. Biochem. 2003;35:577–589. doi: 10.1016/S0038-0717(03)00051-8.10.1016/S0038-0717(03)00051-8Hristov A.N., Oh J., Giallongo F., Frederick T.W., Harper M.T., Weeks H.L., Branco A.F., Moate P.J., Deighton M.H., Williams S.R.O., et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA. 2015;11:10663–10668. doi: 10.1073/pnas.1504124112.10.1073/pnas.1504124112PMC455376126229078
307856222019060320240715
1525-31639742019Apr03Journal of animal scienceJ Anim SciEffects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers1.161916331619-163310.1093/jas/skz067In the last decades, strategies have been evaluated to reduce rumen methane (CH4) production by supplementing tropical forages rich in secondary compounds; however, most of these beneficial effects need to be validated in terms of their persistence over time. The aim of this study was to assess CH4 emissions over time in heifers fed with and without Gliricidia sepium foliage (G) mixed with ground pods of Enterolobium cyclocarpum(E). Two groups of 4 crossbred (Bos taurus x Bos indicus) heifers (284 ±17 kg initial weight) were fed with 2 diets (0% and 15% of a mixture of the pods and foliage [E + G:0 and E + G:15, respectively]) over 80 d, plus 2 wk before the experiment, in which every animal was fed a legume and pod-free diet. Every 14 d, CH4 production, apparent digestibility, volatile fatty acids (VFA), and microbial population were quantified for each animal. The experiment was conducted with a repeated measurements design over time. Diets fed differed in terms of their crude protein (CP), condensed tannins, and saponins content supplied by E. cyclocarpum and G. sepium. For most of the experiment, dry matter intake (DMI) and digestible dry-matter intake (DDMI) were 6.3 kg DMI/d and 512 g DDMI/kg, respectively, for both diets (diet: P > 0.05). Apparent digestible crude protein (DCP) was reduced by 21 g DCP/kg DM when the diet was supplemented with E + G:15 (P = 0.040). Molar proportions of VFA's in the rumen did not differ between diets or in time (P > 0.05). Daily methane production, expressed in relation to DMI, was 23.95 vs. 23.32 g CH4/kg DMI for the diet E + G:0 and E + G:15, respectively (diet: P = 0.016; Time: P > 0.05). Percent gross energy loss as CH4 (Ym) with grass-only diets was above 8.1%, whereas when feeding heifers with the alternate supplementation, Ym values of 7.59% (P = 0.016) were observed. The relative abundance of total bacterial, protozoa, and methanogenic archaeal replicates was not affected by time nor by the incorporation of legume and pods into the diet (P > 0.05). Results suggest that addition of G. sepium mixed with E. cyclocarpum pods can reduce CH4 production in heifers and this response remains over time, without effect on microbial population and VFA concentration and a slight reduction in CPD digestibility.© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.Molina-BoteroIsabel CristinaICFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico.International Center for Tropical Agriculture (CIAT), Palmira, Valle del Cauca, Colombia.Montoya-FloresMaria DenisseMDFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico.Zavala-EscalanteLucas MLMFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico.Barahona-RosalesRolandoRFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico.ArangoJacoboJDepartment of Animal Production, Faculty of Agricultural Sciences, National University of Colombia, Medellin, Medellin, Antioquia, Colombia.Ku-VeraJuan CarlosJCFaculty of Veterinary Medicine and Animal Science, University of Yucatan, Merida, Yucatan, Mexico.engJournal Article
United StatesJ Anim Sci80030020021-88120Fatty Acids, VolatileOP0UW79H66MethaneIMAnimal FeedanalysisAnimalsBody WeightCattlephysiologyDietveterinaryDietary SupplementsanalysisDigestiondrug effectsFabaceaeFatty Acids, VolatilemetabolismFemaleMethanemetabolismPoaceaeRumenmetabolismcattlegreenhouse gaslegumeslong-term feedingmicrobial population
20181011201921520192216020196460201922160202043ppublish30785622PMC644724310.1093/jas/skz0675346711Abdulrazak S.A., Muinga R.W., Thorpe W., and Ørskov E.R.. 1997. Supplementation with Gliricidia sepium and Leucaena leucocephala on voluntary food intake, digestibility, rumen fermentation and live weight of crossbred steers offered Zea mays stover. Livest. Prod. Sci. 49:53–62. doi:10.1016/S0301-6226(97)00018-3Albores-Moreno S., Alayón-Gamboa J. A., Ayala-Burgos A. J., Solorio-Sánchez F. J., Aguilar-Pérez C. F., Olivera-Castillo L., and Ku-Vera J. C.. 2017. Effects of feeding ground pods of enterolobium cyclocarpum jacq. Griseb on dry matter intake, rumen fermentation, and enteric methane production by pelibuey sheep fed tropical grass. Trop. Anim. Health Prod. 49:857–866. doi:10.1007/s11250-017-1275-y28337571Archimède H., Rira M., Barde D. J., Labirin F., Marie-Magdeleine C., Calif B., Periacarpin F., Fleury J., Rochette Y., Morgavi D. P., et al. . 2016. Potential of tannin-rich plants, leucaena leucocephala, glyricidia sepium and manihot esculenta, to reduce enteric methane emissions in sheep. J. Anim. Physiol. Anim. Nutr. (Berl). 100:1149–1158. doi:10.1111/jpn.1242327870287Arceo-Castillo J., Montoya-Flores D., Molina-Botero I.C., Piñeiro-Vázquez A., Aguilar-Pérez C.F., Ayala-Burgos A., Solorio-Sánchez J., Castelán-Ortega O.A., Quintana-Owen P., and Ku-Vera J.C.. 2019. Effect of the volume of pure methane released into respiration chambers on percent recovery rates. Anim. Feed Sci. Technol. 249:54–61. doi:10.1016/j.anifeedsci.2019.02.001Asaolu V.O., Odeyinka S.M., Binuomote R.T., Odedire J.A., and Babayemi, O.J. 2014. Comparative nutritive evaluation of native Panicum maximum, selected tropical browses and their combinations using in vitro gas production technique. A.B.J.N.A. 5(5):198–208. doi:10.5251/abjna.2014.5.5.198.208AOAC 2005. Association of Official Analytical Chemists. 18th ed. Determination of ash in animal feed: Method 942.05. In: Official Methods of Analysis. Gaithersburg, MD.AOAC 1990. Association of Official Analytical Chemists. 15th ed. Protein (Crude) Determination in Animal Feed: Copper Catalyst Kjeldahl Method. (984.13). In: Official Methods of Analysis; Gaithersburg, MD.Brossard L., Martin C., Chaucheyras-Durand F., and Michalet-Doreau B.. 2004. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reprod. Nutr. Dev. 44:195–206. doi:10.1051/rnd:200402315460159Cabezas-García E., Krizsan S., Shingfield K., and Huhtanen P.. 2017. Between-cow variation in digestion and rumen fermentation variables associated with methane production. J. Dairy Sci. 100:1–16. doi:10.3168/jds.2016–1220628390728Cammack K.M., Austin K.J., Lamberson W.L., Conant G.C., and Cunningham H.C.. 2018. Ruminant nutrition symposium: tiny but mighty: the role of the rumen microbes in livestock production. J. Anim. Sci. 96(2):752–770. doi:10.1093/jas/skx053PMC614098329385535Canul-Solis J.R., Piñeiro A.T., Arceo J.I., Alayón J.A., Ayala A.J., Aguilar C.F., Solorio F.J., Castelán O.A., Lachica M., Quintana P., and Ku J.C.. 2017. Design and construction of low-cost respiration chambers for ruminal methane measurements in ruminants. Rev. Mex. Cienc. Pecu. 8(2):185–191. doi:10.22319/rmcp.v8i2.4442Clark H. 2013. Nutritional and host effects on methanogenesis in the grazing ruminant. Animal. 7(suppl. 1):41–48. doi: 10.1017/S175173111200187523127524Díaz Carrasco J. M., Cabral C., Redondo L. M., Pin Viso N. D., Colombatto D., Farber M. D., and Fernández Miyakawa M. E.. 2017. Impact of chestnut and quebracho tannins on rumen microbiota of bovines. Biomed Res. Int. 2017:9610810. doi:10.1155/2017/9610810PMC576307229445749Eckard R.J., Grainger C., and de Klein C.A.M.. 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest. Sci. 130:47–56. doi: 10.1016/j.livsci.2010.02.010Faseleh Jahromi M., Liang J. B., Mohamad R., Goh Y. M., Shokryazdan P., and Ho Y. W.. 2013. Lovastatin-enriched rice straw enhances biomass quality and suppresses ruminal methanogenesis. Biomed Res. Int. 2013:397934. doi:10.1155/2013/397934PMC358114223484116Goering H.K. and Van Soest P.J.. 1970. Forage fiber analysis. Agricultural Handbook No. 379. US Department of Agriculture, Washington, DC, 1–20.Grant R.J., Dann H.M., and Woolpert M.E.. 2015. Time required for adaptation of behavior, feed intake and dietary digestibility in cattle. J. Anim. Sci. 93(Supplement 3):312–314.Guo Y. Q., Liu J. X., Lu Y., Zhu W. Y., Denman S. E., and McSweeney C. S.. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcra gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47:421–426. doi:10.1111/j.1472-765X.2008.02459.x19146532Hammond K. J., Humphries D.J., Crompton L.A., Green C., and Reynolds C.K.. 2015. Methane emissions from cattle: estimates from short-term measurements using a Green Feed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. Anim. Feed Sci. Technol. 203:41–52. doi:10.1016/j.anifeedsci.2015.02.008Henderson G., Cox F., Kittelmann S., Miri V. H., Zethof M., Noel S. J., Waghorn G. C., and Janssen P. H.. 2013. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One. 8:e74787. doi:10.1371/journal.pone.0074787PMC377060924040342Hess H. D., Kreuzer M., Dıaz T. E., Lascano C. E., Carulla J. E., Soliva C. R., and Machmüller A.. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 109:79–94. doi:10.1016/S0377-8401(03)00212-8Hess H. D., Tiemann T.T., Noto F., Carulla J. E., and Kreuzer M.. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser. 1293:164–167. doi:10.1016/j.ics.2006.01.010Hook S. E., Northwood K. S., Wright A. D. G., and McBride B. W.. 2009. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 75:374–380.PMC262070719028912Hristov A. N., Oh J., Firkins J. L., Dijkstra J., Kebreab E., Waghorn G., Makkar H. P., Adesogan A. T., Yang W., Lee C., et al. . 2013. Special topics–mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91:5045–5069. doi:10.2527/jas.2013-658324045497Huhtanen P., Ramin M., and Cabezas-Garcia E.H.. 2016. Effects of ruminal digesta retention time on methane emissions: a modelling approach. Anim. Prod. Sci. 56(3):501–506. doi:10.1071/AN15507Hünerberg M., McGinn S. M., Beauchemin K. A., Entz T., Okine E. K., Harstad O. M., and McAllister T. A.. 2015. Impact of ruminal ph on enteric methane emissions. J. Anim. Sci. 93:1760–1766. doi:10.2527/jas.2014-846926020197 Instituto Nacional de Estadística, Geografía e Informática, INEGI 2017. Anuario estadístico y geográfico Yucatán. México: 711 https://www.inegi.org.mx/ (Accessed 1 September 2018.)ISO 1998. International Organization for Standardization, ISO 9831. Animal feeding stuffs, animal products, and faeces or urine – Determination of gross calorific value – Bomb calorimeter method. Int. Org. Stand., Geneva, Switzerland.Jayanegara A., Goel G., Makkar H.P.S. and Becker K.. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209:60–68. doi: 10.1016/j.anifeedsci.2015.08.002 Kaewpila C. and Sommart K.. 2016. Development of methane conversion factor models for Zebu beef ca le fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 6(20):7422–7432. http://onlinelibrary.wiley.com/doi/10.1002/ece3.2500/epdf (Accessed 1 September 2018.)10.1002/ece3.2500/epdfPMC551325328725409Kennedy P. M., and Charmley E.. 2012. Methane yields from Brahman cattle fed tropical grasses and legumes. Anim. Prod. Sci. 52(4):225–239. doi: 10.1071/AN11103Khan N. A., Yu P., Ali M., Cone J. W., and Hendriks W. H.. 2015. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 95:238–252. doi:10.1002/jsfa.670324752455Ku-Vera J.C., Valencia-Salazar S., Piñeiro-Vázquez A.T., Molina-Botero I.C., and Solorio-Sánchez J.. 2018. Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agric. Forest Meteorol. 258:3–7. doi:10.1016/j.agrformet.2018.01.008Littell R. C., Henry P. R., and Ammerman C. B.. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 76:1216–1231. doi:10.2527/1998.7641216x9581947Liu Y., and Whitman W. B.. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125:171–189. doi:10.1196/annals.1419.019.18378594López J., Tejada I., Vásquez C., Garza J., and Shimada A.. 2004. Condensed tannins in humid tropical fodder crops and their in vitro biological activity: Part 1. J. Sci. Food Agric. 84:291–294. doi:10.1002/jsfa.1651Machado M. G., Detmann E., Mantovani H.C., Valadares-Filho S.C., Bento C.B., Marcondes M.I., and Assunção A. S.. 2016. Evaluation of the length of adaptation period for changeover and crossover nutritional experiments with cattle fed tropical forage-based diets. Anim. Feed Sci. Technol. 222:132–148. doi:10.1016/j.anifeedsci.2016.10.009Makkar H.P. 2003. Measurement of total phenolics and tannins using Folin-Ciocalteu method. In: Makkar H., editor, Quantification of tannins in tree and shrub foliage: A Laboratory Manual. Kluwer Academic Publishers; Dordrecht, Netherlands: p. 49–50.Makkar H.P.S., Blümmel M., and Becker K.. 1995. In vitro effects and interactions of tannins and saponins and fate of tannins in rumen. J. Sci. Food Agric. 69:481–493. doi:10.1002/jsfa.2740690413Martin C., Morgavi D. P., and Doreau M.. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal. 4:351–365. doi:10.1017/S175173110999062022443940Molina I.C., Angarita E.A., Mayorga O.L., Chará J., and Barahona-Rosales R.. 2016. Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest. Sci. 185:24–29. doi:10.1016/j.livsci.2016.01.009Monforte-Briceño G.E., Sandoval C.A., Ramírez L., and Capetillo C.M.. 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Anim. Feed Sci. Technol. 123–124: 313–327. doi: 10.1016/j.anifeedsci.2005.04.016Mpairwe D.R., Sabiiti E.N., and Mugerwa J.S.. 1998. Effect of dried Gliricidia sepium leaf supplement on feed intake, digestibility and nitrogen retention in sheep fed dried KW4 elephant grass (Pennisetum purpureum) ad libitum. Agrofor. Syst. 41:139–150. doi:10.1023/A:1006097902270 Narayan S. 2013. Phytochemical profiles and antioxidant activities of The leaf extracts of Gliricidia sepium. IJIBCS. 3(3):87–91. http://www.parees.co.in/ijibs.htm (Accessed 4 September 2018.) Navas-Camacho A., Laredo M.A., Cuesta A., Anzola H., and Leon J.C.. 1993. Effect of supplementation with a tree legume forage on rumen function. LRRD. 5(2). http://www.lrrd.org/lrrd5/2/navas.htm. (Accessed 2 September 2018.)NRC 2001. Nutrient requirements of beef cattle. National Academies of Sciences, Engineering, and Medicine. Seventh Revised Edition Natl. Acad. Press, Washington, DC.NRC 2016. Nutrient requirements of beef cattle. National Academies of Sciences, Engineering, and Medicine. Eighth Revised Edition Natl. Acad. Press, Washington, DC. doi:10.17226/19014Newbold C. J., el Hassan S. M., Wang J., Ortega M. E., and Wallace R. J.. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237–249. doi:10.1079/BJN199701439301414Oleszek W. 1990. Structural specificity of alfalfa (Medicago sativa) saponin haemolysis and its impact on 378 two haemolysis based quantification methods. J. Sci. Food Agric. 53:477–485. doi:10.1002/jsfa.2740530406Ørskov E.R., Barnes B.J., and Lukins B.A.. 1980. A note on the effect of different amounts of NaOH application on digestibility by cattle of barley, oats, wheat and maize. J. Agric. Sci. 94(2):271–273. doi:10.1017/S0021859600028847Ørskov E.R. and McDonald I.. 1979. The estimation of the protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:449–503. doi:10.1017/S0021859600063048Palarea-Albaladejo J., Rooke J. A., Nevison I. M., and Dewhurst R. J.. 2017. Compositional mixed modeling of methane emissions and ruminal volatile fatty acids from individual cattle and multiple experiments. J. Anim. Sci. 95:2467–2480. doi:10.2527/jas.2016.133928727067Patra A. K., and Saxena J.. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22:204–219. doi:10.1017/S095442240999016320003589Patra A., Park T., Kim M., and Yu Z.. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 8:13. doi:10.1186/s40104-017-0145-9PMC527037128149512Pinares-Patiño C. S., S. H. Ebrahimi, McEwan J. C., Dodds K. G., Clark H., and Luo D.. 2011. Is rumen retention time implicated in sheep differences in methane emission? NZSAP. 71:219–222.Piñeiro-Vázquez A. T., Ayala-Burgos A. J., Chay-Canul A. J., and Ku-Vera J. C.. 2013. Dry matter intake and digestibility of rations replacing concentrates with graded levels of enterolobium cyclocarpum in pelibuey lambs. Trop. Anim. Health Prod. 45:577–583. doi:10.1007/s11250-012-0262-622996698Piñeiro-Vázquez A.T., Canul-Solis J.R., Jiménez-Ferrer G., Alayón-Gamboa J.A., Chay-Canul A.J., Ayala-Burgos A.J., Aguilar-Pérez C.F., and Ku-Vera J.C.. 2018. Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage. Asian-Australas J. Anim. Sci. 31:1738–1746. doi: 10.5713/ajas.17.0192PMC621275329103289Pizzani P., Matute I., Martino G., Arias A., Godoy S., Pereira L., Palma J., and Rengifo M.. 2006. Composición fitoquímica y nutricional de algunos frutos de árboles de interés forrajero de los llanos centrales de Venezuela. Revista de la Facultad de Ciencias Veterinarias. 47(2):105–113. Printed version. ISSN 0258-6576.Porter L., Hrstich L., and Chana B.. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry. 25:223–230. doi:10.1016/S0031-9422(00)94533-3Ramos-Morales E., de la Fuente G., Nash R. J., Braganca R., Duval S., Bouillon M. E., Lahmann M., and Newbold C. J.. 2017. Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure. PLoS One. 12:e0184517. doi:10.1371/journal.pone.0184517PMC559094028886130Ramin M. and Huhtanen P.. 2013. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 96(4):2476–2. doi:10.3168/jds.2012–609523403199Richmond A. S., Wylie A. R., Laidlaw A. S., and Lively F. O.. 2015. Methane emissions from beef cattle grazing on semi-natural upland and improved lowland grasslands. Animal. 9:130–137. doi:10.1017/S175173111400206725167210Rira M., Morgavi D. P., Archimède H., Marie-Magdeleine C., Popova M., Bousseboua H., and Doreau M.. 2015. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J. Anim. Sci. 93:334–347. doi:10.2527/jas.2014-796125568379Robinson D. L., Goopy J., and Hegarty R.S.. 2010. Can rumen methane production be predicted from volatile fatty acid concentrations? Anim. Prod. Sci. 50(6):630–636. doi: 101071/AN09214Robinson D. L., Goopy J. P., Hegarty R. S., and Oddy V. H.. 2015. Comparison of repeated measurements of methane production in sheep over 5 years and a range of measurement protocols. J. Anim. Sci. 93:4637–4650. doi:10.2527/jas.2015-909226523556Rojas-Herrera R., Narváez-Zapata J., Zamudio-Maya M., and Mena-Martínez M. E.. 2008. A simple silica-based method for metagenomic DNA extraction from soil and sediments. Mol. Biotechnol. 40:13–17. doi:10.1007/s12033-008-9061-818373226SAS Institute 2012. User’s guide: statistics version 9.4. SAS Inst. Inc., Cary, NC.Schneider B.H., and Flatt W.P.. 1975. The evaluation of feeds through digestibility experiments. University of Georgia Press, Athens, GA.Seresinhe T., Madushika S. A., Seresinhe Y., Lal P. K., and Orskov E. R.. 2012. Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique. Asian-Australas. J. Anim. Sci. 25:1404–1410. doi:10.5713/ajas.2012.12219PMC409300725049496Shaani Y., Nikbachat M., Yosef E., Ben-Meir Y., Friedman N., Miron J., and Mizrahi I.. 2017. Effect of wheat hay particle size and replacement of wheat hay with wheat silage on rumen pH, rumination and digestibility in ruminally cannulated non-lactating cows. Animal. 11(3):426–435. doi: 10.1017/S175173111600186527609699Soliva C. R., Zeleke A.B., Clement C., Hess H.D., Fievez V., and Kreuzer M.. 2008. In vitro screening of various tropical foliages, seeds, pods and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim. Feed Sci. Technol. 147(1–3):53–71. doi: 10.1016/j.anifeedsci.2007.09.009Spanghero M., Zanfi C., Fabbro E., Scicutella N., and Camellini C.. 2008. Effect of a blend of essential oils on some end products of in vitro rumen fermentation. Anim. Feed Sci. Technol. 145:364–374. doi:10.1016/j.anifeedsci.2007.05.048Stevenson D. M., and Weimer P. J.. 2007. Dominance of prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165–174. doi:10.1007/s00253-006-0802-y.17235560Sylvester J. T., Karnati S. K., Yu Z., Morrison M., and Firkins J. L.. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134:3378–3384. doi:10.1093/jn/134.12.3378.15570040Tapio I., Snelling T. J., Strozzi F., and Wallace R. J.. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8:7. doi:10.1186/s40104-017-0141-0.PMC524470828123698Tarazona A. M., Ceballos M.C., Naranjo J.F., and Cuartas C.A.. 2012. Factors affecting forage intake and selectivity in ruminants. Rev. Colom. Cienc. Pecua. 25(3): 473–487. Print version ISSN 0120-0690Torres-Salado N., Sánchez-Santillán P., Rojas-García A.R., Herrera-Pérez J., and Hernández-Morales J.. 2018. Producción de gases efecto invernadero in vitro de leguminosas arbóreas del trópico seco mexicano. Arch. Zoo. 67(257):55–59. doi: 10.21071/az.v67i257.3491Valencia S., Piñeiro A.T., Molina I.C., Lazos F.J., Uuh J.J., Segura M., Ramírez L., Solorio F.J., and Ku-Vera J.C.. 2018. Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric. Forest Meteorol. 258:108–116 doi:10.1016/j.agrformet.2017.12.262Van Kessel J.A. and Russell J. B.. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20(4):205–210. doi:10.1111/j.1574-6941.1996.tb00319.xWaghorn G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production – Progress and challenges. Anim. Feed Sci. Technol. 147(1–3):116–139. doi:10.1016/j.anifeedsci.2007.09.013Waghorn G. C. and Hegarty R.S.. 2011. Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol. 166:291–301. doi:10.1016/j.anifeedsci.2011.04.019Wallace R. J., Rooke J. A., Duthie C. A., Hyslop J. J., Ross D. W., McKain N., de Souza S. M., Snelling T. J., Waterhouse A., and Roehe R.. 2014. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep. 4:5892. doi:10.1038/srep05892PMC537619925081098Warner D., Bannink A., Hatew B., van Laar H., and Dijkstra J.. 2017. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. J. Anim. Sci. 95:3687–3700. doi:10.2527/jas.2017.145928805897Wina E., Muetzel S., and Becker K.. 2006. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of sapindus rarak saponins. J. Appl. Microbiol. 100:114–122. doi:10.1111/j.1365-2672.2005.02746.x16405691
trying2...
Publications by Maria D Montoya-Flores | LitMetric

Publications by authors named "Maria D Montoya-Flores"

In this study, the effects of orange essential oil (OEO) on the rumen fermentation, nutrient utilization, and methane (CH) emissions of beef heifers fed a diet of bermudagrass () were examined. In addition, and experiments were conducted. The experiment consisted of three treatments: control (CTL, no OEO), OEO1 (0.

View Article and Find Full Text PDF

In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.

View Article and Find Full Text PDF

The rumen microbiome plays a fundamental role in all ruminant species, it is involved in health, nutrient utilization, detoxification, and methane emissions. Methane is a greenhouse gas which is eructated in large volumes by ruminants grazing extensive grasslands in the tropical regions of the world. Enteric methane is the largest contributor to the emissions of greenhouse gases originating from animal agriculture.

View Article and Find Full Text PDF

The effects of dietary inclusion of dried leaves (DLL) on nutrient digestibility, fermentation parameters, microbial rumen population, and production of enteric methane (CH) in crossbred heifers were evaluated. Four heifers were used in a 4 × 4 Latin square design consisting of four periods and four levels of inclusion of DLL: 0%, 12%, 24%, and 36% of dry matter (DM) intake. Results showed that DM intake (DMI), organic matter intake, and gross energy intake (GEI) were similar ( > 0.

View Article and Find Full Text PDF

In the last decades, strategies have been evaluated to reduce rumen methane (CH4) production by supplementing tropical forages rich in secondary compounds; however, most of these beneficial effects need to be validated in terms of their persistence over time. The aim of this study was to assess CH4 emissions over time in heifers fed with and without Gliricidia sepium foliage (G) mixed with ground pods of Enterolobium cyclocarpum(E). Two groups of 4 crossbred (Bos taurus x Bos indicus) heifers (284 ±17 kg initial weight) were fed with 2 diets (0% and 15% of a mixture of the pods and foliage [E + G:0 and E + G:15, respectively]) over 80 d, plus 2 wk before the experiment, in which every animal was fed a legume and pod-free diet.

View Article and Find Full Text PDF