Seaweeds (macroalgae) are an attractive resource for diverse microbial- and enzymatic production processes. They are abundant, underutilized, cheap, and rich in carbohydrates, and therefore have the potential to be used as a source of mono- or oligosaccharides, and as substrates for industrial fermentation processes. Many seaweed polysaccharides, including the sulfated polysaccharides ulvan and fucoidan, are however complex and heterogenous in structure, and there are currently few enzymes available to modify them, and understanding of their enzymatic depolymerization remains limited.
View Article and Find Full Text PDFSeaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes.
View Article and Find Full Text PDFThe evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land.
View Article and Find Full Text PDFUlvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed . is an unexplored species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (/) and the ulvan had a sulfate content of 13.
View Article and Find Full Text PDFThe endothelial cell lining creates an interface between circulating blood and adjoining tissue and forms one of the most critical barriers and targets for therapeutical intervention. Recent studies suggest that fucoidans, sulfated and fucose-rich polysaccharides from brown seaweed, show multiple promising biological effects, including anti-inflammatory properties. However, their biological activity is determined by chemical characteristics such as molecular weight, sulfation degree, and molecular structure, which vary depending on the source, species, and harvesting and isolation method.
View Article and Find Full Text PDFPurpose: Age-related macular degeneration (AMD) is the leading cause of severe vision loss in industrialized nations. Important factors in pathogenesis are oxidative stress, inflammation, and, in the wet form of AMD, angiogenesis. Fucoidans, sulfated polysaccharides from brown algae, may have antioxidant, anti-inflammatory, and antiangiogenic effects.
View Article and Find Full Text PDFFucoidans are complex bioactive sulfated fucosyl-polysaccharides primarily found in brown macroalgae. Endo-fucoidanases catalyze the specific hydrolysis of α-L-fucosyl linkages in fucoidans and can be utilized to tailor-make fucoidan oligosaccharides and elucidate new structural details of fucoidans. In this study, an endo-α(1,3)-fucoidanase encoding gene, , from the marine bacterium , was cloned, and the Mef2 protein was functionally characterized.
View Article and Find Full Text PDFFucoidans are polysaccharides from brown macroalgae, showing multiple bioactivities important for bone regeneration and bone health. However, the use of fucoidans in medical applications remains sparse due to the heterogeneity in their chemical properties and unclear structure-function relationships. Innovations in extraction techniques and post processing steps are needed to produce homogeneous fucoidan molecules with tailorable bioactivities.
View Article and Find Full Text PDFFucoidanases are endo-fucoidanases (also known as endo-fucanases) that catalyze hydrolysis of α-glycosidic linkages in fucoidans, a family of sulfated fucose-rich polysaccharides primarily found in the cell walls of brown seaweeds. Fucoidanases are promising tools for producing bioactive fucoidan oligosaccharides for a range of biomedical applications. High sulfation degree has been linked to high bioactivity of fucoidans.
View Article and Find Full Text PDFThe need for a substitute for allograft and autograft is rising as bone graft surgeries exceed available supplies. We investigated the efficacy of the low-molecular weight marine bioactive compound fucoidan (FUC) on bone regeneration and implant fixation in seven female sheep, as FUC has shown great promise as a bone substitute. Titanium implants were inserted bilaterally in the distal femurs to test three hydroxyapatite/fucoidan (HA/FUC) groups and compared to allograft.
View Article and Find Full Text PDFFucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides.
View Article and Find Full Text PDFThe charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA.
View Article and Find Full Text PDFAngiogenesis, the formation of new blood vessels from existing ones, is an essential process for successful bone regeneration. Further, angiogenesis is a key factor for the development of bone-related disorders like osteosarcoma or arthritis. Fucoidans, sulfated polysaccharides from brown algae, have been shown to affect angiogenesis as well as a series of other physiological processes including inflammation or infection.
View Article and Find Full Text PDFFucoidans from brown macroalgae (brown seaweeds) have different structures and many interesting bioactivities. Fucoidans are classically extracted from brown seaweeds by hot acidic extraction. Here, we report a new targeted enzyme-assisted methodology for fucoidan extraction from brown seaweeds.
View Article and Find Full Text PDFFucoidans from brown seaweeds are promising substances as potential drugs against age-related macular degeneration (AMD). The heterogeneity of fucoidans requires intensive research in order to find suitable species and extraction methods. Ten different fucoidan samples extracted enzymatically from (LD), (SL) and subsp.
View Article and Find Full Text PDFFucoidans from brown macroalgae have beneficial biomedical properties but their use as pharma products requires homogenous oligomeric products. In this study, the action of five recombinant microbial fucoidan degrading enzymes were evaluated on fucoidans from brown macroalgae: , , , , , and . The enzymes included three endo-fucoidanases (EC 3.
View Article and Find Full Text PDFThe adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment.
View Article and Find Full Text PDFIn this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated maltooligosaccharides, pure starch samples including a variety of different structures with variations in the amylopectin branching pattern, amylose content and phosphate content, enzymatically modified starches and glycogen were included. Using this technique, different important structures, including amylose content and branching degrees could be differentiated in a high throughput fashion.
View Article and Find Full Text PDFCentral Kv7 (KCNQ) channels are voltage-dependent potassium channels composed of different combinations of four Kv7 subunits, being differently expressed in the brain. Notably, striatal dopaminergic neurotransmission is strongly suppressed by systemic administration of the pan-Kv7 channel opener retigabine. The effect of retigabine likely involves the inhibition of the activity in mesencephalic dopaminergic neurons projecting to the striatum, but whether Kv7 channels expressed in the striatum may also play a role is not resolved.
View Article and Find Full Text PDFThis paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins.
View Article and Find Full Text PDFThe growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue.
View Article and Find Full Text PDF