White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM).
View Article and Find Full Text PDFThe exciton dynamics of CdSe nanocrystals are intimately linked to the surface morphology. Photo-oxidation of the selenium surfaces of the nanocrystal leads to an increase in radiative decay efficiency from both the band edge and deep trap emission states. The addition of the primary amine hexadecylamine curtails nonradiative excitonic decay attributed to the dangling surface selenium orbitals by passivation of those trap sites by the methylene protons on the amine, leading to enhanced band edge emission and the absence of deep trap emission.
View Article and Find Full Text PDF