Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in .
View Article and Find Full Text PDFInfections caused by methicillin-resistant (MRSA) are a leading cause of mortality worldwide. MRSA has acquired resistance to next-generation β-lactam antibiotics through the horizontal acquisition of the resistance gene. Development of high resistance is, however, often associated with additional mutations in a set of chromosomal core genes, known as potentiators, which, through poorly described mechanisms, enhance resistance.
View Article and Find Full Text PDFAs bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection.
View Article and Find Full Text PDF