Developing a vaccine to prevent congenital cytomegalovirus (CMV) infection and newborn disability requires an understanding of infection incidence. In a prospective cohort study of 363 adolescent girls (NCT01691820), CMV serostatus, primary infection, and secondary infection were determined in blood and urine samples collected at enrollment and every 4 months for 3 years. Baseline CMV seroprevalence was 58%.
View Article and Find Full Text PDFWe present a patient with suspected Proteus Syndrome, an overgrowth disorder associated with mutation. NGS analysis detected mutation in the patient's affected tissue allowing for PROS (PIK3CA-related overgrowth spectrum) diagnosis. The overlapping clinical features in overgrowth disorders highlight the importance of molecular testing for a correct diagnosis.
View Article and Find Full Text PDFAdoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses.
View Article and Find Full Text PDFMolecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.
View Article and Find Full Text PDFRoot chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important.
View Article and Find Full Text PDFCytokinins are involved in many aspects of plant growth and development, and physiological evidence also indicates that they have a role in floral transition. In order to integrate these phytohormones into the current knowledge of genetically defined molecular pathways to flowering, we performed exogenous treatments of adult wild type and mutant Arabidopsis plants, and analysed the expression of candidate genes. We used a hydroponic system that enables synchronous growth and flowering of Arabidopsis, and allows the precise application of chemicals to the roots for defined periods of time.
View Article and Find Full Text PDFPlant Signal Behav
November 2008
In Arabidopsis thaliana, vernalization promotes flowering by repressing the floral inhibitor FLOWERING LOCUS C (AtFLC). This repression is mediated through epigenetic modifications at the AtFLC locus, leading to gene silencing. Whether the well-known quantitative effect of vernalization is due to the degree of AtFLC repression and/or its stability after return to normal temperature conditions has not been clarified.
View Article and Find Full Text PDFMolecular genetic analyses in Arabidopsis disclosed a genetic pathway whereby flowering is induced by the photoperiod. This cascade is examined here within the time course of floral transition in the long-day (LD) plant Sinapis alba induced by a single photoperiodic cycle. In addition to previously available sequences, the cloning of CONSTANS (SaCO) and FLOWERING LOCUS T (SaFT) homologues allowed expression analyses to be performed to follow the flowering process step by step.
View Article and Find Full Text PDF* Of the Brassicaceae, Sinapis alba has been intensively studied as a physiological model of induction of flowering by a single long day (LD), while molecular-genetic analyses of Arabidopsis thaliana have disclosed complex interactions between pathways controlling flowering in response to different environmental cues, such as photoperiod and vernalization. The vernalization process in S. alba was therefore analysed here.
View Article and Find Full Text PDF