The high antigenic variability of the foot-and-mouth disease virus (FMDV) represents a challenge for developing prophylactic strategies, stressing the need for research into vaccines offering broad protection against a range of virus strains. Here, the heterotypic cross-reaction using different vaccine schemes against serotype O strains was studied, evaluating the impact of revaccination, antigen dose, and incorporation of additional FMDV serotypes. Naïve cattle were immunized with seven distinct FMDV vaccines, receiving three doses of the same formulation at 0, 28, and 56 days post-primary vaccination (dpv).
View Article and Find Full Text PDFThe role of water buffaloes in foot-and-mouth disease (FMD) epidemiology as one of the major hosts of the virus that can develop persistent asymptomatic infection highlights the importance of sustaining surveillance on the antibody response elicited by vaccination in these animals. There is gap in the knowledge on how serological assays that measure antibodies against capsid proteins perform with buffalo samples and which would be the most reliable test to substitute the virus neutralization test (VNT) a cumbersome and low-throughput tool for field surveillance. Alternatively, the liquid-phase blocking sandwich ELISA (LPBE) is commonly used.
View Article and Find Full Text PDFFoot-and-mouth disease (FMD) remains one of the major threats to animal health worldwide. Its causative agent, the FMD virus (FMDV), affects cloven-hoofed animals, including farm animals and wildlife species, inflicting severe damage to the international trade and livestock industry. FMDV antigenic variability remains one of the biggest challenges for vaccine-based control strategies.
View Article and Find Full Text PDFThe efficacy of foot-and-mouth disease virus (FMDV) inactivated vaccines is mainly dependent on the integrity of the whole (146S) viral particles. If the intact capsids disassemble to 12S subunits, antibodies against internal-not protective epitopes, may be induced. Serological correlates with protection may be hampered if antibodies against internal epitopes are measured.
View Article and Find Full Text PDFNeurobrucellosis, which is the most morbid form of brucellosis disease, presents with inflammatory signs and symptoms. Recent experimental evidence clearly indicates that deregulation of astrocytes and microglia caused by Brucella infection creates a microenvironment in the central nervous system (CNS) in which secretion of pro-inflammatory mediators lead to destabilization of the glial structure, the damage of the blood brain barrier (BBB) and neuronal demise. This review of Brucella interactions with cells of the CNS and the BBB is intended to present recent immunological findings that can explain, at least in part, the basis for the inflammatory pathogenesis of the nervous system that takes place upon Brucella infection.
View Article and Find Full Text PDFThe innate immune system is essential for the detection and elimination of bacterial pathogens. Upon inflammasome activation, caspase-1 cleaves pro-IL-1β and pro-IL-18 to their mature forms IL-1β and IL-18, respectively, and the cell undergoes inflammatory death termed pyroptosis. Here, we reviewed recent findings demonstrating that Brucella abortus ligands activate NLRP3 and AIM2 inflammasomes which lead to control of infection.
View Article and Find Full Text PDF