Publications by authors named "Maria Cristina Morganti-Kossmann"

Immune system molecules are expressed by neurons, yet their functions are often unknown. We have identified IL-13 and its receptor IL-13Ra1 as neuronal, synaptic proteins in mouse, rat, and human brains, whose engagement upregulates the phosphorylation of NMDAR and AMPAR subunits and, in turn, increases synaptic activity and CREB-mediated transcription. We demonstrate that increased IL-13 is a hallmark of traumatic brain injury (TBI) in male mice as well as in two distinct cohorts of human patients.

View Article and Find Full Text PDF

The complexity of signaling events and cellular responses unfolding in neuronal, glial, and immune cells upon traumatic brain injury (TBI) constitutes an obstacle in elucidating pathophysiological links and targets for intervention. We use array phosphoproteomics in a murine mild blunt TBI to reconstruct the temporal dynamics of tyrosine-kinase signaling in TBI and then scrutinize the large-scale effects of perturbation of Met/HGFR, VEGFR1, and Btk signaling by small molecules. We show Met/HGFR as a selective modifier of early microglial response and that Met/HGFR blockade prevents the induction of microglial inflammatory mediators, of reactive microglia morphology, and TBI-associated responses in neurons and vasculature.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI.

View Article and Find Full Text PDF

Purpose: To determine the diagnostic and prognostic value of glial fibrillary acidic protein (GFAP) and S100B after traumatic brain injury (TBI) in an Erythropoietin (EPO) clinical trial and examine whether EPO therapy reduces biomarker concentrations.

Materials And Methods: Forty-four patients with moderate-to-severe TBI were enrolled to a sub-study of the EPO-TBI trial. Patients were randomized to either Epoetin alfa 40,000 IU or 1 ml sodium chloride 0.

View Article and Find Full Text PDF

This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons.

View Article and Find Full Text PDF

The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) can cause serious health problems and even death.
  • After the initial injury, the brain might get worse, and this involves the body’s immune system reacting.
  • Different methods can be used to check inflammation in the brain, which can help us understand how the brain is healing and how we might treat it better.
View Article and Find Full Text PDF

Background: In intensive care observational studies, hypercapnia after cardiac arrest (CA) is independently associated with improved neurological outcome. However, the safety and feasibility of delivering targeted therapeutic mild hypercapnia (TTMH) for such patients is untested.

Methods: In a phase II safety and feasibility multi-centre, randomised controlled trial, we allocated ICU patients after CA to 24h of targeted normocapnia (TN) (PaCO2 35-45mmHg) or TTMH (PaCO2 50-55mmHg).

View Article and Find Full Text PDF

Background: Hypoxia following traumatic brain injury (TBI) is a severe insult shown to exacerbate the pathophysiology, resulting in worse outcome. The aim of this study was to investigate the effects of a hypoxic insult in a focal TBI model by monitoring brain edema, lesion volume, serum biomarker levels, immune cell infiltration, as well as the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF).

Materials And Methods: Female Sprague-Dawley rats (n = 73, including sham and naive) were used.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Long thought to be solely a deleterious factor, the neuroinflammatory response has recently been shown to be far more intricate, with both beneficial and detrimental consequences depending on the timing, magnitude and specific immune composition of the response post-injury. Despite extensive preclinical and clinical research into mechanisms of secondary injury after TBI, no effective neuroprotective therapy has been identified, with potential candidates repeatedly proving disappointing in the clinic.

View Article and Find Full Text PDF

We have previously demonstrated that traumatic brain injury (TBI) induces significant long-term neuronal hyperexcitability in supragranular layers of sensory cortex, coupled with persistent sensory deficits. Hence, we aimed to investigate whether brain plasticity induced by environmental enrichment (EE) could attenuate abnormal neuronal and sensory function post-TBI. TBI (n = 22) and sham control (n = 21) animals were randomly assigned housing in either single or enriched conditions for 7-9 weeks.

View Article and Find Full Text PDF

Unlabelled: During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims.

View Article and Find Full Text PDF

Melatonin is an endogenous hormone mainly produced by the pineal gland whose dysfunction leads to abnormal sleeping patterns. Changes in melatonin have been reported in acute traumatic brain injury (TBI); however, the impact of environmental conditions typical of the intensive care unit (ICU) has not been assessed. The aim of this study was to compare daily melatonin production in three patient populations treated at the ICU to differentiate the role of TBI versus ICU conditions.

View Article and Find Full Text PDF

Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood-brain barrier (BBB) dysfunction.

View Article and Find Full Text PDF

Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) can result in persistent sensorimotor and cognitive deficits including long-term altered sensory processing. The few animal models of sensory cortical processing effects of TBI have been limited to examination of effects immediately after TBI and only in some layers of cortex. We have now used the rat whisker tactile system and the cortex processing whisker-derived input to provide a highly detailed description of TBI-induced long-term changes in neuronal responses across the entire columnar network in primary sensory cortex.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a complex disease in the most complex organ of the body, whose victims endure lifelong debilitating physical, emotional, and psychosocial consequences. Despite advances in clinical care, there is no effective neuroprotective therapy for TBI, with almost every compound showing promise experimentally having disappointing results in the clinic. The complex and highly interrelated innate immune responses govern both the beneficial and deleterious molecular consequences of TBI and are present as an attractive therapeutic target.

View Article and Find Full Text PDF

Progressive neurodegeneration following traumatic brain injury (TBI) involves the Fas and TNF-receptor1 protein systems which have been implicated in mediating delayed cell death. In this study, we used two approaches to assess whether inhibition of these pathways reduced secondary brain damage and neurological deficits after TBI. Firstly, we investigated whether the expression of non-functional Fas in lpr mice subjected to TBI altered tissue damage and neurological outcome.

View Article and Find Full Text PDF

Despite dramatic improvements in the management of traumatic brain injury (TBI), to date there is no effective treatment available to patients, and morbidity and mortality remain high. The damage to the brain occurs in two phases, the initial primary phase being the injury itself, which is irreversible and amenable only to preventive measures to minimize the extent of damage, followed by an ongoing secondary phase, which begins at the time of injury and continues in the ensuing days to weeks. This delayed phase leads to a variety of physiological, cellular, and molecular responses aimed at restoring the homeostasis of the damaged tissue, which, if not controlled, will lead to secondary insults.

View Article and Find Full Text PDF

Little is known about the molecular events following severe traumatic brain injury (TBI) in humans and to date there are no efficient therapies for the treatment of patients. In this study, the first of its kind in human tissue, a total of 21 post mortem trauma brain samples were analyzed. The inflammatory response within the brain tissue was explored by measuring the expression of various inflammatory cytokines at the mRNA and protein levels.

View Article and Find Full Text PDF

Chemokines and their receptors have crucial roles in the trafficking of leukocytes, and are of particular interest in the context of the unique immune responses elicited in the central nervous system (CNS). The chemokine system CC ligand 2 (CCL2) with its receptor CC receptor 2 (CCR2), as well as the receptor CXCR2 and its multiple ligands CXCL1, CXCL2 and CXCL8, have been implicated in a wide range of neuropathologies, including trauma, ischemic injury and multiple sclerosis. This review aims to overview the current understanding of chemokines as mediators of leukocyte migration into the CNS under neuroinflammatory conditions.

View Article and Find Full Text PDF

Despite the fact that traumatic brain injury (TBI) is a silently growing epidemic, we are yet to understand its multifaceted pathogenesis, where various cellular pathways are initiated in response to both the primary mechanical insult and secondary physiologically mediated injury. Although the brain has traditionally been considered an immunologically privileged site, evidence to the contrary exists in studies of central nervous system (CNS) pathology, in particular TBI. Transmigration of leukocytes following blood brain barrier (BBB) disruption results in activation of resident cells of the CNS, such as microglia and astrocytes, to possess immunological function.

View Article and Find Full Text PDF

The potential role of the chemokine Fractalkine (CX3CL1) in the pathophysiology of traumatic brain injury (TBI) was investigated in patients with head trauma and in mice after experimental cortical contusion. In control individuals, soluble (s)Fractalkine was present at low concentrations in cerebrospinal fluid (CSF) (12.6 to 57.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) and interleukin-(IL)-18 are important mediators of neuroinflammation after closed head injury (CHI). Both mediators have been previously found to be significantly elevated in the intracranial compartment after brain injury, both in patients as well as in experimental model systems. However, the interrelation and regulation of these crucial cytokines within the injured brain has not yet been investigated.

View Article and Find Full Text PDF