Several studies suggest that extremely low-frequency magnetic fields (ELF-MFs) may enhance the free radical endogenous production. It is also well known that one of the unavoidable consequences of ageing is an overall oxidative stress-based decline in several physiological functions and in the general resistance to stressors. On the basis of these assumptions, the aim of this study was to establish whether the ageing process can increase susceptibility towards widely present ELF-MF-mediated pro-oxidative challenges.
View Article and Find Full Text PDFIt is well established that age-related decline of the biological capacity of a woman to reproduce is primarily related to the poor developmental potential of her gametes. This renders female ageing the most significant determinant of success in IVF. Starting with a reference picture of the main molecular and cellular failures of aged oocytes, granulosa cells and follicular microenvironment, this review focuses on age-related biochemical mechanisms underlying these changes.
View Article and Find Full Text PDFBackground: Mammalian sperm-oocyte interaction at fertilization involves several combined interactions between integrins on the oocyte and integrin ligands (disintegrins) on the sperm. Recent research has indicated the ability of peptides containing the RGD sequence that characterized several sperm disintegrins, to induce intracellular Ca2+ transients and to initiate parthenogenetic development in amphibian and bovine oocytes. In the present study, we investigate the hypothesis that an integrin-associated signalling may participate in oocyte activation signalling by determining the ability of a cyclic RGD-containing peptide to stimulate the activation of protein kinase C (PKC) and the exocytosis of cortical granules in mouse oocytes.
View Article and Find Full Text PDFTo elucidate molecular mechanisms underlying oocyte senescence, we investigated whether oocytes from female mice of advanced reproductive age exhibit a precocious postovulatory aging that, in turn, may be responsible for the precocious activation of an apoptotic program. During a 9-h in vitro culture, the frequency of oocytes showing MII aberrations, spontaneous activation, and cellular fragmentation increased in old oocytes (P < 0.05), whereas it did not change in the young group.
View Article and Find Full Text PDF