Publications by authors named "Maria Corena-McLeod"

Antipsychotics, risperidone, and risperidone's active metabolite, paliperidone (9-hydroxyrisperidone), are related molecules used for the treatment of schizophrenia and related disorders. Differences in receptor binding, 5-HT2A/D2 (serotonin/dopamine) binding ratios, and mitochondrial proteomics suggest that the effects of risperidone and paliperidone on neuronal firing, regulation of mitochondrial function, and movement are different. This review seeks to explore the most significant differences at the molecular level between risperidone and paliperidone, as reported in preclinical studies.

View Article and Find Full Text PDF

Background: Mitochondrial short and long-range movements are necessary to generate the energy needed for synaptic signaling and plasticity. Therefore, an effective mechanism to transport and anchor mitochondria to pre- and post-synaptic terminals is as important as functional mitochondria in neuronal firing. Mitochondrial movement range is regulated by phosphorylation of cytoskeletal and motor proteins in addition to changes in mitochondrial membrane potential.

View Article and Find Full Text PDF

A series of recent studies has demonstrated that the molecules involved in regulation of neuronal plasticity are also involved in the mode of action of antidepressants and mood stabilizer drugs. Intracellular calcium signaling, energy metabolism, and neuronal plasticity can be influenced by inducing axonal remodeling and increasing levels of certain synaptic proteins. Because antipsychotic drugs are used as mood stabilizers our studies focused on a newly-marketed antipsychotic drug, paliperidone.

View Article and Find Full Text PDF