Publications by authors named "Maria Concetta Spinnato"

Article Synopsis
  • Iron-sulfur (Fe-S) clusters are crucial for bacteria to respond to environmental changes and iron scarcity, with two primary biogenesis systems identified: ISC (housekeeping) and SUF (stress response).* -
  • Most bacteria possess only one of these systems, typically SUF, but the human pathogen under study has only ISC, which is essential for its survival and adaptation under various conditions.* -
  • This research highlights the different roles of ISC and SUF in bacterial fitness, revealing that bacteria with only ISC can better withstand oxidative stress and iron deprivation compared to those with only SUF.*
View Article and Find Full Text PDF

The functional and physiological characterization of bacterial genes required for growth and/or cell survival is limited by the inability to generate deletion mutants lacking the specific gene of interest. This limitation can be circumvented by generating conditional mutants in which the loss of the endogenous copy of the gene is compensated by the introduction of the wild-type allele under the control of an inducible promoter, which allows for tightly regulated expression of the gene of interest. Besides the confirmation and/or functional investigation of essential genes, conditional mutants can also be useful to investigate the effect of finely controlled expression of nonessential genes.

View Article and Find Full Text PDF

To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress- and antibiotic-induced mutagenesis has been characterized in detail in the model organism .

View Article and Find Full Text PDF

DNA polymerase III (Pol III) is the replicative enzyme in bacteria. It consists of three subcomplexes, the catalytic core, the β clamp, and the clamp loader. While this complex has been thoroughly characterized in the model organism , much less is known about its functioning and/or its specific properties in other bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • * The enzyme LpxO catalyzes this hydroxylation, which is crucial for the bacteria's resistance to antimicrobial peptides, survival in blood, and overall pathogenicity.
  • * Research using mutants shows that both LpxO1 and LpxO2 contribute to hydroxylation of lipid A, influencing infectivity in animal models without significantly impacting growth or antibiotic resistance in vitro.
View Article and Find Full Text PDF