The functional and physiological characterization of bacterial genes required for growth and/or cell survival is limited by the inability to generate deletion mutants lacking the specific gene of interest. This limitation can be circumvented by generating conditional mutants in which the loss of the endogenous copy of the gene is compensated by the introduction of the wild-type allele under the control of an inducible promoter, which allows for tightly regulated expression of the gene of interest. Besides the confirmation and/or functional investigation of essential genes, conditional mutants can also be useful to investigate the effect of finely controlled expression of nonessential genes.
View Article and Find Full Text PDFTo cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress- and antibiotic-induced mutagenesis has been characterized in detail in the model organism .
View Article and Find Full Text PDFDNA polymerase III (Pol III) is the replicative enzyme in bacteria. It consists of three subcomplexes, the catalytic core, the β clamp, and the clamp loader. While this complex has been thoroughly characterized in the model organism , much less is known about its functioning and/or its specific properties in other bacteria.
View Article and Find Full Text PDF